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Drones in Last-Mile Logistics: Research and Projects at OPSLab

Over the past years, the OPSLab at DIETI-UNINA has focused on optimization problems related to the use of drones in last-mile logistics.
The lab is currently involved in three national research projects addressing these topics.
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Outline of the presentation

Drones in logistics: motivations, background and literature review

The Flying Sidekick Traveling Salesman Problem (FS-TSP)

a) A Big-M Free MILP Formulation and a Branch-and-Cut Approach
b) A Branch-and-Price approach based on ng-route relaxation
c¢) Branch-and-Cut vs Branch-and-Price approaches

d) A machine learning-guided matheuristic

Conclusions and future research directions




Drones in logistics: Motivation, Context, and Literature




Literature on Drone in Logistics: multinational use cases

l One of the most promising application fields where the use of drones can result useful is the last-mile logistics. '

» Several studies showed the benefits, in terms both of emissions and completion time reduction, that can be achieved by using drones for parcel deliveries.
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Literature on Drone in Logistics: use cases before 2021

Table 1
Summary of use cases of drones for logistics.

Company Reference Type of drone Flight range Delivery time Weight Location
Retailing and E-commerce
Amazon.com Wallace (2013) Quadcopter 10 miles 13 min < 5 lbs UK
7-Eleven Glaser (2016) Hexa-copter 1 mile < 10 min NV, USA
Flytrex Shivali (2017) Hexa-copter 6 miles 4 min = 6 lbs Iceland
JD.com Meredith and KharpalKharpal (2017) Hexa-copter < 100km — 5-20 kg China
Rakuten Rakuten (2019) Quadcopter 40 min 5 min < 5kg Japan
Walmart Vincent (2020) Hexa-copter 6.2 miles < 6.6 lbs NG, USA
Postal services and mail delivery
DHL Franco (2016) Tilted-wing 5 miles 8 min. 4.4 lbs Germany ' 1
UPs Perez and Kolodny (2017) Octa-copter 10 min. = 10 Ibs Lithia, FL, USA
Food and drink delivery . 0
Francesco’s Pizzeria Nelson (2014) Quadcopter 1 mile 10 min - Mumbai &t, -
Coca Cola Staff (2014) Octa-copter - - - Singapore r 4 i
Lakemaid Grenoble (2014) Hexa-copter — — - MN, USA
Domino’s Murphy (2016) Quadcopter 1 mile 10 min - New Zeleand
Alphabet Levin (2016) VTOL 6 miles 1.5 kg VA, USA Australia %
Orange Leaf Dietzer (2016) Hexa-copter 35 min MI, USA
Flytrex Morgan (2017) Hexa-copter 6 miles 4 min < 6 lbs Iceland
LaMar Gallucci ( ; Quadcopter CO, USA
Foodpanda Amin (2020) Quadcopter 5 km 3 min 2kg Singapore
Healthcare and emergency services
Matternet Wang ( Quad-copter 12.4 miles 15 min 4.4 lbs Lesotho, Africa
TUDelft TUDelft ( ) Tri-copter 12 km 1 min 4kg The Netherland
Alphabet Levin (2016) VTOL 6 miles 1.5 kg Queensland, Australia
Flirtey Vanian (2016) Quad-copter VA, USA
HiRO Hattiesburg (2015) Octa-copter - - 20 lbs MS, USA
Zipline Ackerman and Strickland (2018) Flat-wing 100 miles 15 min 3 1bs Rwanda
Vayu Vayu (2016) VTOL - - 23 kg Madagascar
Center for Resuscitation Science Howard (2017), Claesson et al. (2017) Quad-copter 2 miles 3 min. 0.76 kg Sweden
Altomedika Lomas (2017) Quad-copter 50 km - 3kg Russia
UPs Peterson and Graves (2019) Quad-copter 12.5 miles = 51bs NC, UsA

Moshref-Javadi, M., & Winkenbach, M. (2021). Applications and Research avenues for drone-based models in logistics:
A classification and review. Expert Systems with Applications, 177, 114854.
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Literature on Drone in Logistics

recent use cases

Company/Project References Range Payload Sector Country
Walmart + Wing Garg et al. (2023) Up to 6 miles <51lb Retail & Grocery USA
Walmart + Zipline (P2) Garg et al. (2023) 10 miles 6-81b Retail & Grocery USA
Amazon Prime Air (MK30) Garg et al. (2023) — (BVLOS) <51lb Retail & General USA
Manna Drone Delivery Sorbelli et al. (2024) =3 km =4 kg Food & Convenience Ireland
Swoop Aero - 'Kite' Ostermann et al. (2025) Up to 120 km = 3 kg Healthcare ituhsi’frg:iaa/ Malawi/
Meituan (Keeta) Sorbelli et al. (2024) Urban routes <3 kg Food & Quick Commerce China
Flytrex + DoorDash Jazairy (2024) = 5 miles < 3kg Food & Grocery USA
&Paitzliﬁgfc Ilz\?lgward * Jazairy (2024) Up to 20 km = 2kg Healthcare USA
Wing + NHS/Apian Ostermann et al. (2025) Urban corridors — Healthcare UK

SF Express Ostermann et al. (2025) Inter-city trial — Express logistics China




Literature on Drone in Logistics: surveys

Otto, A., Agatz, N., Campbell, J., Golden, B., & Pesch, E. (2018). Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial
drones: A survey. Networks, 72(4), 411-458.

Khoufi, I., Laouiti, A., & Adjih, C. (2019). A survey of recent extended variants of the traveling salesman and vehicle routing problems for unmanned aerial
vehicles. Drones, 3(3), 66.

Macrina, G., Pugliese, L. D. P., Guerriero, F., & Laporte, G. (2020). Drone-aided routing: A literature review. Transportation Research Part C: Emerging
Technologies, 120, 102762.

Rojas Viloria, D., Solano-Charris, E. L., Mufioz-Villamizar, A., & Montoya-Torres, J. R. (2021). Unmanned aerial vehicles/drones in vehicle routing problems: a
literature review. International Transactions in Operational Research, 28(4), 1626-1657.

Boysen, N., Fedtke, S., & Schwerdfeger, S. (2021). Last-mile delivery concepts: a survey from an operational research perspective. Or Spectrum, 43, 1-58.

Moshref-Javadi, M., & Winkenbach, M. (2021). Applications and Research avenues for drone-based models in logistics: A classification and review. Expert Systems
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Sah, B., Gupta, R., & Bani-Hani, D. (2021). Analysis of barriers to implement drone logistics. International Journal of Logistics Research and Applications, 24(6),
531-550.

Liang, Y. J., & Luo, Z. X. (2022). A survey of truck—drone routing problem: Literature review and research prospects. Journal of the Operations Research Society of
China, 10(2), 343-377.

Rejeb, A., Rejeb, K., Simske, S. J., & Treiblmaier, H. (2023). Drones for supply chain management and logistics: a review and research agenda. International
Journal of Logistics Research and Applications, 26(6), 708-731.

Garg, V., Niranjan, S., Prybutok, V., Pohlen, T., & Gligor, D. (2023). Drones in last-mile delivery: A systematic review on Efficiency, Accessibility, and Sustainability.
Transportation Research Part D: Transport and Environment, 123, 103831.

Jahani, H., Khosravi, Y., Kargar, B., Ong, K. L., & Arisian, S. (2025). Exploring the role of drones and UAVs in logistics and supply chain management: a novel
text-based literature review. International Journal of Production Research, 63(5), 1873-1897.




Last mile delivery with truck and drone systems

The best approach for last-mile logistics involves the combined use of traditional vehicles and drones. (Agats et al., Transp.

Sci.2018; Chung et al. Comp. Oper. Res. 2020, Liang and Luo, J. Oper. Res. Soc. China 2022; etc.)

delivery systems using a truck and a drone Truck-Drone Synchronization
two key parameters Yes No

Synchronization between the truck and the drone:

Yes

* the two vehicles operate in parallel with no interaction between them

* the two vehicles operate in tandem coordinating their movements

Interaction between the drone and the customers:

Drone-Customer Interaction
No

* the drone delivers parcels directly to customer locations

* the drone resupplies the truck with parcels becoming available while deliveries are in

progress

l Based on these two parameters, we can identify three different truck-and-drone systems for last-mile delivery .




Last mile delivery with truck and drone systems

Parallel truck-drone system
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Parallel Drone Scheduling TSP

C. C. Murray and A. G. Chu. The Flying Sidekick Traveling Salesman Problem: Optimization of
Drone-assisted Parcel Delivery. Transportation Research Part C, 2015.
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Last mile delivery with truck and drone systems

Drone resupply system

* the two vehicles operate in tandem Truck-Drone Synchronization
coordinating their movements Yes No
c PDS- TSP
* there is no interaction between the drone = g
and the customers E kS
* not all customer parcels are available at the ;
depot at the beginning of the planning horizon ~ § TSP-RD-DR
* the drone resupplies the truck with parcels E o
released during ongoing deliveries é

TSP with Release Dates and Drone Resupply

J. C. Pina-Pardo, D. F. Silva, & A. E. Smith. The traveling salesman problem with release dates
and drone resupply. Computers & Operations Research, 2021.

-
Truck movement 1) a

Drone movement 'L [ -




Last mile delivery with truck and drone systems

Synchronized truck-drone system

the two vehicles operate in tandem

coordinating their movements
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* the drone delivers parcels directly to
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Flying Sidekick TSP

C. C. Murray and A. G. Chu. The Flying Sidekick Traveling Salesman Problem:
Optimization of Drone-assisted Parcel Delivery. Transportation Research Part C, 2015.
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Synchronized truck and drone system

How truck and drone work together to optimize deliveries
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The Flying Sidekick Traveling Salesman Problem
(ES-TSP )




FS-TSP: problem statement

The Flying Sidekick TSP is a variant of the traveling salesman problem involving drone-assisted parcel delivery

The FS-TSP is a delivery problem in which a truck and a drone (unmanned aerial vehicle UAV) are used as a synchronized working
unit to make the delivery process more efficient and, possibly, less expensive.

4 Drone tasks

V' the drone is launched from the truck,
vt proceeds to deliver goods to a customer

vt joins back the truck before its endurance is exhausted

4 Truck tasks

v' while the drone is serving a customer, the truck travels to deliver parcels to other customers

v' it has to recover the drone before finishing the endurance of the drone

v' it can serve other customers when the drone is “on board”



FS-TSP: problem statement

The Flying Sidekick TSP is a variant of the traveling salesman problem involving drone-assisted parcel delivery

The FS-TSP is a delivery problem in which a truck and a drone (unmanned aerial vehicle UAV) are used as a synchronized working

unit to make the delivery process more efficient and, possibly, less expensive.
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Serving two customers with the drone instead of the truck can reduce the overall delivery time required to serve all the customers.



FS-TSP: problem statement

The Flying Sidekick TSP is a variant of the traveling salesman problem involving drone-assisted parcel delivery

The FS-TSP is a delivery problem in which a truck and a drone (unmanned aerial vehicle UAV) are used as a synchronized working
unit to make the delivery process more efficient and, possibly, less expensive.

FS-TSP decision levels:

= Routing decision —  route performed by the truck

- Assignment decision , clients to served by the drone or by the truck
(the drone can only deliver parcels to eligible customers — payload capacity)

= Operational Decisions -, launch and pick-up node for each drone flight
(considering the endurance limit of the drone)

minimize the overall delivery time
WAVA




FS-TSP: literature review

Flying Sidekick TSP: exact approaches

» C.C.Murray & A. G. Chu. The Flying Sidekick Traveling Salesman Problem: Optimization of Drone-assisted Parcel Delivery. Transportation Research
Part C, 2015.
- MILP formulation and two heuristic approaches
- None of the 10 customers benchmark instances solved to optimality.

» M. Dell’Amico, R. Montemanni & S. Novellani. Exact models for the flying sidekick traveling salesman problem. International Transactions in
Operational Research, 2022.
- Branch and cut approach
- Solve to optimality most of the 20 customers Murray instances

» M. Boccia, A. Masone, A. Sforza & C. Sterle. A column and row generation approach for the flying sidekick traveling salesman problem. Transportation
research Part C: Emerging Technologies, 2021.
- Column and row generation approach
- Solve to optimality most of the 20 customers Murray instances

» R.Roberti & M. Ruthmair. Exact methods for the traveling salesman problem with drone. Transportation Science, 2021.
- Branch and price and dynamic programming
- Solve to optimality most of the 40 customers Poikonen instances

» M. Boccia, A. Mancuso, A. Masone, & C. Sterle. A new MILP formulation for the flying sidekick traveling salesman problem. Networks, 2023.
= Branch and Cut approach
- Solve to optimality the 20 customers Murray instances
- Solve to optimality most of instances up to 40 customers Poikonen instances

» M. Blufstein, G. Lera-Romero & F. J. Soulignac. Decremental State-Space Relaxations for the Basic Traveling Salesman Problem with a Drone.
INFORMS Journal on Computing, 2024.

= Branch and Price and dynamic programming approach
- Solve to optimality instances up to 60 customers Poikonen instances



FS-TSP: drawbacks in literature models

To account for synchronization constraints between drone and truck, most of the models in the literature either contain Big-M

constraints or use an exponential number of variables.

Murray and Chu (2015)

Decision variables:

— if the arc (i,j) is included to the truck route

— sortie if the drone performs the sortie

I — time time at which the truck (drone) arrives at node j .

— precedence  if customer i is visited before costomer j

— p  specifies the position of node i in the truck route




FS-TSP: drawbacks in literature models

To account for synchronization constraints between drone and truck, most of the models in the literature either contain Big-M

constraints or use an exponential number of variables.

Murray and Chu (2015)
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A MILP formulation without big-M constraints and
with a polynomial number of variables
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FS-TSP: MILP formulation

Information fully defining a feasible solution

Truck information
V" The truck route

v’ The total travel time along the arcs of the route

Drone sorties (for each sortie):
v The drone path and its total travel time
V' The truck path and its total travel time

v’ The truck waiting time, computed as the difference between the drone travel time and the truck travel tii

The objective value of the solution is given by the sum of:

v" The truck travel time

v’ The service time for launch and recovery of each sortie

v’ The truck waiting time for each sortie

A solution can be fully defined without requiring the exact arrival times of the truck and the drone at the nodes.




FS-TSP: MILP formulation

» The depot is splitted into two nodes, an origin node () with only outgoing arcs and a destination node () with only incoming arcs.
> s the complete directed graph where and is the set of arcs.

>, is the truck travelling time and is the drone travelling time.

» and are the drone launch and recovery time, respectively.

> s the drone time limit.

Binary decision variables:

— if the arc (i,j) belongs to the truck path
— if the arc (1,]) is crossed by the truck while the drone is serving
— =1 if client h is served by the drone

— if node 1 is the origin node of the sortie serving client

— if node 1 is the destination node of the sortie serving client

is the waiting time of the truck at the destination node of the sortie serving client



FS-TSP: MILP formulation

— if the arc (i,j) belongs to the truck path
— if the arc (i,j) is crossed by the truck while the drone is serving

— =1 if client h is served by the drone
— if node i is the origin node of the sortie serving client

— if node i is the destination node of the sortie serving client

Continuous decision variables:

— is the waiting time of the truck at the destination node of the sortie serving client

Example of feasible solution

9v'=1
,@ . o"=max (0,d ,+d,,—t, -t )
wi=1 y” _ N 6h=1
e ® F—————@ i e
yij_l yjp:1 ypq:l yqr:l




FS-TSP: MILP formulation

— if the arc (i,j) belongs to the truck path
— if the arc (i,j) is crossed by the truck while the drone is serving

— =1 if client h is served by the drone
— if node i is the origin node of the sortie serving client

— if node i is the destination node of the sortie serving client

Continuous decision variables:

— is the waiting time of the truck at the destination node of the sortie serving client

Objective function

Min ) t.y.+ ) [SL+SR|9"- ) SLwi+ ) o'

i,jle A heC heC heC
Truck Route Launch and Waiting
Length Recovery Time Time



FS-TSP: MILP formulation

Truck routing constraints:

E yS j — E yi t —_enloutgoing arc from the origin and one
)e A

i- ( i t) e A ingoing arc to the destination node
° b

Jj:(s,j)e
Z y ij = Z y ji < 1 l elf‘/s visited by the truck, it must have exactly one
Jj:(i,j)e A

A incominc and one outgoing arc
j:(j.i)e A

Z y,'j < Z (1 - l9h) Sc V,q €S Subtour elimination constraints

i,jeSv(i,jleA heSiq)

Truck sortie constraints:
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ylj yji_wi 511 = Vh e C or each sortie, there is a path from the launch node to the recovery
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j' (1. J) c A . (J i) c A node travelled by the truck without the drone on board

Single assignment constraints:
2 : h__
y hj + l9 - 1 h S é:h client must be served either by the truck or by the drone
Ji(h,j)e A
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romj to i




FS-TSP: MILP formulation

The duration of the truck path of a sortie can’t exceed the

drone endurance

The duration of a drone sortie can’t exceed the drone

endurance

The truck waiting time of a sortie is given by the
difference between the duration of the drone path and the
duration of the truck path, if it is greater than 0

The truck path during a drone sortie must be a subpath or

the origin destination path

If h is served by the drone, the corresponding sortie must

have a launch and a recovery node

If i is the launch node of a sortie, it can’t be served by the

drone

If j is the recovery node of a sortie, it can’t be served by

the drone
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FS-TSP: MILP formulation
Min ), t.y.+), [SL+SR|9"- ) SLwi+) o
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FS-TSP: Branch-and-Cut

In any feasible solution there must be a truck path from the origin node to the generic node and from to the destination node , if is
served by the truck ().

Cut inequalities
>, y;21-9"heC >, iy21-9"heC
(i,j)E(VSZVh) (Z’J)E(tht)(’

— cut separating s and h .
P g — cut separating h and t

| Cut inequalities strengthen the FS-TSP formulation and they can be used as subtour elimination contraints '

» They are added dynamically to the relaxed formulation (without the subtour elimination constraints).

» The separation algorithm consists of the solution of a min-cut problem between and ( and ), on the graph , where each arc is
weighted with the fractional value attained by the variable in the current LP relaxation.



FS-TSP: Branch-and-Cut, implementation details

Boccia, Mancuso, Masone and Sterle (2023)

The Branch-and-Cut algorithm was implemented using the callbacks provided by the Gurobi solver
» Tt starts with the solution of the linear programming relaxation

» At each node of the first three levels of the enumeration tree, the Cut inequalities are separated by means of a
max-flow separation procedure for both integer and fractional solutions.

> At the other nodes of the enumeration tree the subtour elimination constraints are separated as lazy constraints:

— whenever an integer solution is found, it is checked whether the constraints are satisfied (i.e., whether the
solution contains subtours).

* [If satisfied, the incumbent value is updated

If violated, the corresponding subtour elimination constraints are added to the formulation.

— The experiments were performed on an Intel(R) Core(TM) i7-8700k, 3.70 Ghz, 16.00 GB of RAM.
— The branch-and-cut algorithm has been coded in Python using Gurobi 9.5 Callable Library.



FS-TSP: Branch-and-Cut, computational results

Test bed 1 (Murray and Chu Instances)

» 120 instances with 20 customers and drone endurance Dtl = 20 minutes

» 120 instances with 20 customers and drone endurance Dtl = 40 minutes

Best results in Dell’Amico et al. (2022) and in Boccia et al. (2021)

-
The proposed approach solves to optimality in a time limit of 1 hour :

v 37 of 38 unsolved instances with Dtl = 20
v' 102 of 116 unsolved instances with Dtl = 40

The 2023 results remain the best reported in the literature for this Test bed.



FS-TSP: Branch-and-Cut, computational results

Boccia, Mancuso, Masone and Sterle (2023)
Test bed 2 (Poikonen Instances)

> 300 instances with 9, 19, 29, and 39 custormers, with Dtl = 20.

Best results (then): Roberti and Ruthmair (2021 ).
v’ Branch-and-Price approach

v Pricing problem solved with a dynamic programming algorithm

(Results on the Poikonen instances with time limit of 1 hour

Roberti and Ruthmair Branch and Cut
Average time 392,8 secs 517 secs.
Average gap 1,37 0,17

# unsolved 14 22
instances




FS-TSP: Branch-and-Cut, computational results

Test bed 2 (Poikonen Instances)

> 300 instances with 9, 19, 29, and 39 custormers, with Dtl = 20.

Best results (then): Roberti and Ruthmair (2022).

(Results on the Poikonen instances with time limit of 1 hour

Roberti and Ruthmair Branch and Cut
Average time 392,8 secs 517 secs.
Average gap 1,37 0,17
# unsolved 14 22
instances

Best current results: Blufstein, Lera-Romero and Soulignac (2024).
v' Branch-and-Price approach

V' Pricing problem solved with a dynamic programming algorithm
Smart variable fixing strategies

They are able to solve Poikonen instances with up to 60 nodes.




FS-TSP: Murray and Chu vs. Poikonen Instances

Murray and Chu Instances Poikonen Instances
v Customers randomly placed in a 20%20 square v Customers and depot randomly placed in a 50%50 grid
v' Distribution is not uniform but denser near depot (40%, ¥ Truck time = Manhattan distance

60%, and 80% of customers are located within a circle v" Drone time = Euclidean distance x o, with a=1,2 or 3

AN NI NN

centered at the depot with radius 10 mi.) v No service times (SR = SL = 0)
Distances: Manhattan (truck), Euclidean (drone).

v Dtl =20
Speeds: Truck = 25 mph, Drone = 25 or 35 mph.
SR=SL=1
Dtl = 20 or 40

Because customers are on average closer to each other, the Murray and Chu instances present a larger number of feasible
sorties, often with the truck covering multiple arcs before picking up the drone.

Such sorties are more likely in the feasible solutions
of the first test bed than in the second.




A Branch and Price approach for the FS-TSP
based on the ng-route relaxation
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FS-TSP: set partitioning formulation

Definitions:
sortie _, is a synchronized pair of a truck path and a two-arc drone path between the same nodes;
combined path _ is a path followed by the truck with the drone on board;

length (of a sortie or combined path) _, is the number of nodes visited, excluding the origin

A route is an ordered sequence of sorties and combined paths, from the depot back to the depot, with total length ,
where each component ends at the node where the next one begins

Combined path: d-1-2 length: 2 Combined path: d-1 length: 1
Sortie: 2-4; 1-3-4 length: 2

Sortie: 1-5; 1-2-5 length: 2
Sortie: 4-5-7; 4-6-7  length: 3

Sortie: 5-4; 5-3-4 length: 2

-
=
=
g
E

LU

Sortie: 7-9; 7-8-9 length: 2 Combined path: 4-6-5-7

length: 3
Sortie:7-d, 7-8-d length: 2

Combined path:9-d length: 1

Example of feasible route Example of unfeasible route




FS-TSP: set partitioning formulation

> Let be the set of all route in graph
>
— indicate the number of times customer is visited by route ;

— indicate the duration of route

Binary decision variables:

— if route 1 is selected, otherwise

Set partitioning Formulation:
Min ) d.g,

reR

Z 6,« =1 Exactly one route must be selected The difficulty of the problem moves from
reR the model to the exponentially large set
Z aiT’ éT‘ — 11 S C Each customer must be visited Of variables.
reR

. elollreRrR




FS-TSP: branch-and-price

At each node of the enumeration tree, a column generation procedure is applied to solve the linear relaxation of the set-partitioning
formulation.

Column generation

» Let be a subset of routes;

» Solve the linear relaxation of the subproblem defined by :
— let z* denote the optimal value of the subproblem;
— let be the dual variable associated with the first constraint (;
— let, for , denote the dual variables associated with the partitioning constraints ().

> Solve the following pricing problem:
Mind, —u, — Z a. . u,
1e C
re R\R’

let r* be the optimal solution of the pricing problem and d* its value;

» If then z* is the optimal value of the complete linear relaxation problem; otherwise update and iterate the procedure.



FS-TSP: branch-and-price

» The pricing problem on relaxed set can be solved efficiently by dynamic programming.

» The set of routes is a relaxation of the set of feasible solutions, but it is far from being tight:
¢+ provides weak lower bounds;
¢+ leads to an exponential growth of the search tree;

“= makes medium scale instances unsolvable.

A better approach: use a tighter relaxation without making the pricing problem too hard to solve.

Roberti & Ruthmair (2021) and Blufstein, Lera-Romero & Soulignac (2024) use the ng-Route relaxation,
first proposed for the truck-only case by Baldacci, Mingozzi & Roberti (2011).




FS-TSP: branch-and-price, ng-route relaxation

ng-route relaxation: key ideas

» Subtours are allowed _, a customer may be skipped or visited more than once.

» Revisit of node i is allowed only if a «distant» node j is visited in between.

6efinition \

U For each node , the ng-set ( is the set of customers closest to ;

U An ng-route:
* starts/ends at the depot

* visiting exactly n (not necessary different) nodes

\ * customer can be revisited iff there exists a customer with between the two visits. j




FS-TSP: branch-and-price, ng-route relaxation

Example: non-ng-Route vs. ng-Route

[LILTTT Y

subtour 5->4->6->5 not allowed 2¢C,

subtour 2->4->6->7-2 allowed

» Subtours in ng-routes, when present, tend to be long and thus not appealing

» The lower bound provided by the ng-route relaxation is more effective



FS-TSP: branch-and-price, ng-route relaxation

» The least-reduced-cost ng-route can be computed by dynamic programming.

» Increasing the cardinality of the ng-sets improves the lower bounds provided by the ng-relaxation.

» On the other hand, the larger the cardinality of the ng-sets, the more time-consuming dynamic programming becomes,
since it requires more state variables and weaker dominance rules.

A proper trade-off must be found between the quality of the bounds and the computational effort. ]

In M. Blufstein, G. Lera-Romero & F. J. Soulignac. Decremental State-Space Relaxations for the Basic Traveling Salesman
Problem with a Drone. INFORMS Journal on Computing, 2024, the authors:

U fixed the cardinality of the ng-sets to 5;
U used stronger dominance criteria than Roberti & Ruthmair (2021);

U adopted efficient fixing strategies to speed up the pricing procedure.

They achieved available in the literature on the Poikonen test bed,




FS-TSP: branch-and-price vs. branch-and-cut

At present, the state-of-the-art solution for the FS-TSP relies on a Branch-and-Price algorithm proposed by Blufstein, G. Lera-
Romero & F. J. Soulignac (2024).

The question is:

> Does this really mean that Branch-and-Price is the best way — or even the only way — to solve the FS-TSP?

s

It is not easy to give a definite straightforward answer.

But to address this question we can take a closer look at how the literature on exact
approaches for the FS-TSP has evolved in recent years.

\_




FS-TSP: branch-and-price vs. branch-and-cut

Evolution of exact approaches for the FS-TSP

>

>

2015 - CPLEX Branch-and-Cut - C. C. Murray & A. G. Chu. The flying sidekick traveling salesman problem:
Optimization of drone-assisted parcel delivery. Transportation Reseach Part C.

2019 - Branch-and-Cut. - M. Dell Amico, R. Montemanni & S. Novellani. Drone-assisted deliveries: new
formulations for the Flying Sidekick Traveling Salesman Problem. Optimization Letters.

2021 - Branch-and-Cut-and-Price - M. Boccia, A. Masone, A. Sforza & C. Sterle. A column-and-row generation
approach for the flying sidekick traveling salesman problem. Transportation Reseach Part C.

2022 - Branch-and-Cut - M. Dell'amico, R. Montemanni & S. Novellani. Exact models for the flying sidekick
traveling salesman problem. International Trancactions in Operational Research.

2022 - Branch-and-Price - R. Roberti & M. Ruthmair. Exact methods for the traveling salesman problem with
drone. Transportation Science.

2023 - Branch-and-Cut - M. Boccia, A. Mancuso, A. Masone & C. Sterle. A new MILP formulation for the flying
sidekick traveling salesman problem. Networks.

2024 - Branch-and-Price - M. Blufstein, G. Lera-Romero & F. Soulignac. Decremental State-Space Relaxations
for the Basic Traveling Salesman Problema with a Drone. INFORM Journal an Computing.




FS-TSP: branch-and-price vs. branch-and-cut

At present, the state-of-the-art solution for the FS-TSP relies on a Branch-and-Price algorithm proposed by Blufstein, G. Lera-
Romero & F. J. Soulignac (2024).

The question is:

> Does this really mean that Branch-and-Price is the best way — or even the only way — to solve the FS-TSP?

6 If we want to obtain good results from a Branch-and-Price approach, the key lies in improving the \
pricing problem and designing new relaxations to make it more efficient.

» On the other hand, if we aim to achieve good performance with a Branch-and-Cut approach, we

need to focus on polyhedral analysis, the identification of new valid inequalities, as well as effective
fixing and branching strategies.

At present, Blufstein, Lera-Romero, and Soulignac have done an excellent job, working on the pricing
\problem and achieving the best results so far. /

I hope the next time I see you at a conference, it will be because one of our team is presenting a work entitled ‘New valid
inequalities for the FS-TSP...”— meaning we’ve finally improved our Branch-and-Cut.



Machine learning-guided matheuristic approach
for the FS-TSP
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FS-TSP: ML-guided matheuristics

The solution of a FS-TSP instance requires to decide:
v’ the subsets of customers assigned to the truck and to the drone, respectively;
V' the nodes where the drone will be launched and retrieved for each drone sortie

V' the order according to which the customers will be visited by the two vehicles

Key questions:

» What information could be useful to reduce the complexity of the problem and its formulation?

Drone customers / Truck customers known in advance -  problem much simple
...but still NP-hard (more complex than the TSP)

> But how could we possibly obtain this information?

When we don’t know the answer...
we rely on Machine Learning!




FS-TSP: ML-guided matheuristics

First matheuristic

Core Idea

» Goal: reduce the complexity of the original problem.

»  Approach: use a Machine Learning classifier to assign customers to two categories:
Truck only - can only be served by the truck

Drone only — can only be served by the drone

Impact on the Formulation

»  Once customers are classified, the FS-TSP formulation can be simplified by fixing a large set of variables.

» The reduced model is then solved using the branch-and-cut approach.

Classification Experiment

» Input: original customer features.

> Output: label (truck only / drone only).

»  Method: supervised Machine Learning experiment.

» Implementation: classification models built using the Scikit-learn package in Python.



FS-TSP: ML-guided matheuristics

Customer features:

Training Set Feature Design

> Instances generated with 10, 15, and 20 customers » Problem-related features: parameters from the assumptions
» Generation procedure follows Murray and Chu (2025) v’ e.g., drone endurance, drone speed, truck speed,

» Parameters varied: square side lenght ...

' Customer density (average number of customers per

» Graph-topology features: characteristics of the customer
unit square)

node within its local neighborhood

v'D
rone endurance . .
v e.g., node centrality measures, distance to the nearest

v
Drone speed) customer ...

Uniform Dataset Construction Modular approach:

> Each customer = one observation .

> v' Training is done on small/medium-sized instances
To balance the dataset: pe e . :

v Classification is applied to larger instances

v 1,080 instances with 10 customers — 10,800 observations

v" 720 instances with 15 customers — 10,800 observations
v

v Neighborhood features computed only within the subgraph

, . _ reachable by the drone (given its endurance)
540 instances with 20 customers — 10,800 observations

Overall, we identified 6 problem-related features and 10 graph-topology features, which we then attempted to reduce by applying the feature
selection procedures provided by the Scikit-learn.




FS-TSP: ML-guided matheuristics

Customer classification:

We tested eight different classifiers: test_accuracy | test_precision | test_recall | test_f1

: 0.798 0.861 0.884 0.871

* k-nearest neighbors (KNN), KNN
_ _ LSV 0.848 0.857 0.965 0.908

* linear support vector machine (LSV),

. RSV 0.802 0.830 0.940 0.881
* kernel support vector machine (RSV), RAF 515 81 P 590
* random forests (RAF), NNE 0.852 0.867 0.926 0.896
* neural networks (NNE), ADB 0.849 0.870 0.949 0.907
* adaptive boost algorithm (ADB) DET 0.851 0.881 0.934 0.907
e decision tree (DET), GRB 0.856 0.887 0.935 0.910

* gradient bosting (GBM)

Accuracy — Among all predictions, the percentage that are correct.

Precision — Among the predicted positives, the percentage that are actually positive.

Based on the tests carried out, we chose to use the Recall - Among the actual positives, the percentage that are correctly predicted.
Gradient Boosting classifier and applied a feature

selection procedure, which reduced the initial set N o B
from 16 features to 9. Positive prediction = node classified as truck-only.

F1-Score — A single measure that balances precision and recall.




FS-TSP: ML-guided matheuristics

First matheuristic, main steps

> Step 1 - Classification Classification
Nodes are classified into truck-only and drone-only using the ML classifier. (ML classifier)

»  Step 2 — MILP Reduction
The MILP formulation of the problem is simplified according to this classification. MILP
Reduction

> Step 3 — Solution
The reduced model is solved with the branch-and-cut algorithm to obtain a

feasible solution. Branch-and- Reclassify
Cut Solution Nodes
A

> Step 4 — Feasibility Check
If the reduced model turns out to be infeasible, some nodes are reclassified from
drone-only to truck-only, and the branch-and-cut is solved again.

Feasibility
Check

To speed up the procedure, a time limit is imposed for solving the reduced model.




FS-TSP: ML-guided matheuristics

First matheuristic, computational results

@tances generated with Murray & Chu procedure with

30 customers - Dtl = 40
* Branch-and-Cut vs. ML-guided matheuristic
*  Branch-and-Cut time limit = one hour

* low computation time

Significant gaps between heuristic and B&C solutions

The gap shows how much the heuristic solution differs, in percentage terms,
from the branch-and-cut one:

G

Branch-and-Cut

FIRST ML HEUR (GB FS)

Id

UB Gap B&CTime

BMMS_30 0 25 40
BMMS_30_C 26 40
BMMS_30 X 27 40
BMMS_30 0 28 40
BMMS_30_C_29_40
BMMS_30_X_30_40
BMMS_30_0_31_40
BMMS_30_C_32_40
BMMS_30_X_33_40
BMMS_30_0_34 40
BMMS_30_C_35_40
BMMS_30_X_36_40
BMMS_30_0_37_40
BMMS_30_C_38_40
BMMS_30_X_39_40
BMMS_30_0_40_40
BMMS_30_C_41_40
BMMS_30_X_42_40
BMMS_30_0_43_40
BMMS_30_C_44 40
BMMS_30_X_45_40
BMMS_30_0_46_40
BMMS_30_C_47_40
BMMS 30 X 48 40

181,02 7,19 3600,87
159,15 3,52 3600,89
209,89 5,04 3601,06
204,75 5,31 3601,18
206,62 3,04 3601,10
209,22 5,10 3600,88
206,10 4,10 3601,02
200,99 2,44 3600,91
201,19 2,80 3600,80
181,26 7,95 3600,81
174,60 5,39 3600,86
177,15 7,03 3600,92
182,66 17,47 3601,25
175,08 5,82 3600,96
176,39 5,02 3600,92
172,30 7,83 3601,14
166,28 9,99 3600,75
165,03 5,28 3600,98
176,52 17,79 3601,23
167,98 10,97 3600,96
165,24 5,98 3601,12
172,15 3,01 3600,56
159,66 5,81 3600,75
199,14 3,24 3600,74

Sap Time

e 121 5,34
182,10 12,60 4,63
241,59 13,12 5,74
227,47 9,99 8,53
227,56 9,20 6,85
222,71 6,06 11,98
227,19 9,28 6,04
213,25 5,75 5,34
224,18 10,26 8,82
183,00 0,95 6,22
181,57 3,84 4,39
179,24 1,17 6,86
183,00 0,19 7,78
181,57 3,58 5,75
179,24 1,59 10,84
185,72 7,22 7,55
181,57 8,42 5,82
182,96 9,80 5,34
185,72 4,96 6,69
181,57 7,49 7,17
182,96 9,69 5,45
194,10 11,31 11,64
179,85 11,23 5,79
226,07 11,81 9,54

AVG.

3600,94

7,37 7,09

OPSLY.

Optimization end Problem Sohving Laboratory
Laboratorio di Ottimizzazione e Problem Sohving



FS-TSP: ML-guided matheuristics

Key limitation of the described heuristic:

> the classifier is forced to assign every customer to either the truck or the drone, even when the probability of belonging to a
given class is very low.

Second matheuristic:

Core Idea

» classifiers can provide probability scores for class membership

» A Machine Learning classifier is used to assign customers to three categories:
Truck only — can only be served by the truck
Drone only — can only be served by the drone

Not classified — customers that cannot be clearly assigned to either class.

* Unclassified customers are those that the classifier cannot assign “truck-only” or “drone-only” with a probability above a
given threshold.

** In our experiments, the threshold value was chosen so that 10% of the nodes remain unclassified.

An increase in the complexity of the reduced problem is expected to lead to an improvement in the quality
of the obtained solutions.




FS-TSP: ML-guided matheuristics

Second matheuristic, computational results

Branch-and-Cut FIRSTMLHEUR(GBFS)  |SEC ML HEUR (10% free nodes)
Id UB Gap B&CTime UB Gap Time UB Gap Time
'z BMMS 30.0 2540 | 181,02 7,19  3600,87 | 19509 7,21 534 | 183,96 1,60 7,29
Instances generated with BMMS 30.C 26 40 | 159,15 3,52  3600,89 | 182,10 1260 463 | 167,86 5,19 6,26
BMMS 30 X 27 40 | 209,89 504  3601,06 | 241,59 13,12 574 | 21358 1,73 7,20
Murray & Chu procedure BMMS 30.0 28 40 | 204,75 531  3601,18 | 227,47 9,99 8,53 | 209,86 244 11,79
30 customers - Dil = 40 BMMS 30.C 29 40 | 20662 3,04  3601,10 | 22756 9,20 685 | 217,84 5,15 8,03
BMMS 30 X 3040 | 209,22 510  3600,88 | 222,71 6,06 11,98 | 211,58 1,12 12,65

BMMS_30_0_31_40 206,10 4,10 3601,02 | 227,19 9,28 6,04 221,86 7,10 11,59
BMMS 30 C 32 40 200,99 2,44 3600,91 | 213,25 5,75 5,34 207,39 3,09 7,60
BMMS_30 X 33 40 201,19 2,80 3600,80 | 224,18 10,26 8,82 207,82 3,19 11,80
BMMS_30 O 34 40 181,26 7,95 3600,81 | 183,00 0,95 6,22 181,66 0,22 8,12
BMMS_30 C_35 40 174,60 5,39 3600,86 | 181,57 3,84 4,39 180,55 3,30 7,08
BMMS_30 X 36 40 177,15 7,03 3600,92 | 179,24 1,17 6,86 177,24 0,05 8,49
BMMS_30 0_37 40 182,66 17,47 3601,25 | 183,00 0,15 7,78 181,66 -0,55 8,33
BMMS_30 C_38 40 175,08 5,82 3600,96 | 181,57 3,58 5,75 180,44 2,97 7,83
BMMS_30 X 39 40 176,39 5,02 3600,92 | 179,24 1,58 10,84 177,24 0,48 13,27
BMMS_30 O_40 40 172,30 7,83 3601,14 | 185,72 7,22 7,55 175,30 1,71 9,84
BMMS_30 C_41 40 166,28 9,99 3600,75 | 181,57 8,42 5,82 174,87 4,92 10,43
BMMS_30 X 42 40 165,03 5,28 3600,98 | 182,96 9,80 5,34 172,54 4,36 9,49
BMMS_30 O _43 40 176,52 17,79 3601,23 | 185,72 4,96 6,69 175,30 -0,69 9,17
BMMS_30_C_44 40 167,98 10,97 3600,96 | 181,57 7,49 7,17 174,87 3,94 9,46
BMMS_30_X_45_40 165,24 5,98 3601,12 | 182,96 9,69 5,45 177,43 6,87 8,83
BMMS_30_0_46_40 172,15 3,91 3600,56 | 194,10 11,31 11,64 174,43 1,31 13,43
BMMS_30_C_47_40 158,66 5,81 3600,75 | 179,85 11,23 5,79 167,22 4,52 15,55
BMMS 30 X 48 40 159,14 3,24 3600,74
AVG. 3600,94 7,37 7,09 2,84 9,85




FS-TSP: ML-guided matheuristics

Further limitation of the second heuristic:

» Some customers are good drone candidates individually; but serving both with the drone leads to a low-quality solution.

Example:
-
> Good solutions — only node 4
6 © or node 5 is served by the drone
. 6 G
» Nodes 4 and 5 are good candidates /v\a
to be served by the drone \ ) /
( )
A > Poor-quality solution — both nodes 4

and 5 are served by the drone




FS-TSP: ML-guided matheuristics

Further limitation of the second heuristic:

» Some customers are good drone candidates individually; but serving both with the drone leads to a low-quality solution.

Third matheuristic (kernel search approach):

Kernel Search approach Bucket 1 Bucket 2

® 6 0 First reduced problem
unclussified nodes = kernel set

» Rank customers by their probability of belonging to the truck or drone class 4 2 & @ & ©

» Define kernel as the set of unclassified nodes (low probability)

0O 606 0 O 6 O O 6 0 Initial solution
» Solve the reduced problem considering only the kernel nodes as unclassified
- Iterative phase:
p Second reduced problem
» Add the first unprocessed bucket of nodes to the kernel V)2 © | © @ @ 9 60 unclussified nodes =

kernel + bucket 1

0 0 @ 0 9 9 0 a e New solution — node 3 (outside

the kernel) changed class

» Solve the reduced problem again

» If some bucket nodes change class, add them to the kernel

> Repeat with the unprocessed bucket until all are considered New kernel set —
P P P26 000 060 node 3 added to
the kernel
- Parameters:

Initial kernel size = 10% of nodes - Bucket size = 5% of nodes - Time limit per iteration = 0.5 X number of nodes




FS-TSP: ML-guided matheuristics

Third matheuristic, computational results

Instances generated with Murray & Chu procedure 30 customers - Dtl = 40

Branch-and-Cut FIRST MLHEUR (GB FS) SECMLHEUR (10% free nodes) | THIRD MLHEUR (10% kernel 5% bucket)

Id UB Gap B&CTime UB Gap Time UB Gap Time UB Gap Time
BMMS_30_0_25 40 181,02 7.19 3600,87 | 195,08 7,21 5,34 183,96 1,60 7,29 179,38 -0,92 18,01
BMMS_30_C_26_40 159,15 3,52 3600,89 182,10 12,60 4,63 167,86 5,19 6,26 161,69 1,57 24,39
BMMS_30_X 27 40 209,89 5,04 3601,06 | 241,58 13,12 5,74 213,58 1,73 7,20 213,58 1,73 34,30
BMMS_30_0_28 40 204,75 5,31 3601,18 | 227,47 9,99 8,53 209,86 2,44 11,79 209,86 2,44 17,01
BMMS_30_C_29 40 206,62 3,04 3601,10 | 227,56 9,20 6,85 217,84 5,15 8,03 207,84 0,58 16,89
BMMS_30_X_30_40 209,22 5,10 3600,88 | 222,71 6,06 11,98 211,58 1,12 12,65 211,58 1,12 34,62
BMMS_30_0_31_40 206,10 4,10 3601,02 | 227,19 9,28 6,04 221,86 7,10 11,59 211,86 2,72 35,97
BMMS_30_C_32 40 200,99 2,44 3600,91 | 213,25 5,75 5,34 207,39 3,09 7,60 204,11 1,53 21,53
BMMS_30_X_33_40 201,19 2,80 3600,80 | 224,18 10,26 8,82 207,82 3,19 11,80 207,82 3,19 29,17
BMMS_30_0_34 40 181,26 7,95 3600,81 183,00 0,95 6,22 181,66 0,22 8,12 181,66 0,22 24,93
BMMS_30_C_35_40 174,60 5,39 3600,86 | 181,57 3,84 4,39 180,55 3,30 7,08 178,55 2,21 35,46
BMMS_30_X_36_40 177,15 7,03 3600,92 179,24 1,17 6,86 177,24 0,05 8,49 177,24 0,05 26,17
BMMS_30_0_37_40 182,66 17,47 3601,25 183,00 0,19 7,78 181,66 -0,55 8,33 181,66 -0,55 25,29
BMMS_30_C_38_40 175,08 5,82 3600,96 | 181,57 3,58 5,75 180,44 2,97 7,83 180,44 2,97 31,83
BMMS_30_X_39_40 176,39 5,02 3600,92 179,24 1,59 10,84 177,24 0,48 13,27 177,24 0,48 27,34
BMMS_30_0_40_40 172,30 7,83 3601,14 | 185,72 7,22 7,55 175,30 1,71 9,84 175,30 1,71 26,81
BMMS_30_C_41_40 166,28 9,99 3600,75 181,57 8,42 5,82 174,87 4,92 10,43 169,18 1,72 16,60
BMMS_30_X_42_40 165,03 6,28 3600,98 182,96 9,80 5,34 172,54 4,36 9,49 165,54 0,31 24,01
BMMS_30_0_43_40 176,52 17,79 3601,23 185,72 4,96 6,69 175,30 -0,69 9,17 175,30 -0,69 27,12
BMMS_30_C_44 40 167,98 10,97 3600,96 | 181,57 7,49 7,17 174,87 3,94 9,46 170,87 1,69 16,55
BMMS_30_X_45_40 165,24 5,98 3601,12 182,96 9,69 5,45 177,43 6,87 8,83 177,43 6,87 22,38
BMMS_30_0_46_40 172,15 3,01 3600,56 | 194,10 11,31 11,64 174,43 1,31 13,43 174,43 1,31 18,23
BMMS_30_C_47 40 159,66 5,81 3600,75 179,85 11,23 5,79 167,22 4,52 15,55 167,22 4,52 35,70
BMMS_30_X_48_40 199,14 3,24 3600,74 | 226,07 11,91 9,54 207,93 4,23 12,92 205,79 3,23 34,74
AVG. 3600,94 7,37 7,09 2,84 9,85 1,67 26,04




FS-TSP: ML-guided matheuristics

Third matheuristic, computational results

Heuristic approaches: current state of the art

* Sasan Mahmoudinazlou & Changhyun Kwon (2024)
A hybrid genetic algorithm with type-aware chromosomes for Traveling

Salesman Problems with Drone
Published in EJOR

ﬂnstances generated with Murray & Chu procedure

with 50 customers - Dtl = 20

* Genetic algorithm vs. ML-guided matheuristic
*  Mathheuristic time limit = 100 sec

*  Maximum number of analyzed buckets = 5

Beter solutions

Significantly higher computational times

GA MK 2024 THIRD ML HEUR {10% kernel 5% bucket)
Id UB Time UB Gap Time
mbB101_n50_al00 115,89 12,26 113,89 -1,76 72,06
mbB102_n50_al100 113,82 9,06 110,02 -3.45 97.58
mbB103_n50_al100 113,52 10,57 111,92 -1.43 100,00
mbB104_n50_al100 120,88 10,38 118,86 -1,70 68,05
mbB105_n50_al100 114,44 6,02 111,53 -2,61 67,58
mbB106_n50_al100 112,69 12,07 114,35 1,45 100,00
mbB107_n50_al100 115,02 12,56 112,92 -1,86 100,00
mbB108_n50_al100 113,7 10 111,47 -2,00 86,13
mbB109_n50_al100 116,9 7.89 118,01 0,94 100,00
mbB110_n50_al100 115,04 8,55 112,76 -2,02 99,73
mbC101_n50_a500 212,38 11,43 208,84 -1,70 100,00
mbC102_n50_a500 202,9 4,03 198,69 -2,12 100,00
mbC103_n50_a500 204,97 3,82 201,40 -1,77 100,00
mbC104_n50_a500 215,12 9,43 212,54 -1,21 100,00
mbC105_n50_a500 225,54 4,14 220,63 -2,23 100,00
mbC106_n50_a500 233,57 4.1 22943 -1,80 100,00
mbC107_n50_a500 219,49 §,14 218,23 -0,58 66,41
mbC108_n50_a500 234,18 §22 231,45 -1,18 96,02
mbC109_n50_a500 224,73 3,59 220,03 -2,14 100,00
mbC110_n50_a500 223,62 6,5 224,25 0,28 66,20
mbD101_n50_al1000 3134 8,1 308,83 -1,48 89,53
mbD102_n50_al1000 307,7 5,84 302,98 -1,56 72,92
mbD103_n50_al000 288,3 10,01 282,58 -2,02 100,00
mbD104_n50_al000 320,94 7.88 321,04 0,03 100,00
mbD105_n50_al000 314,08 847 303,28 -3,56 81,83
mbD106_n50_al000 307,87 6,34 303,34 -1,49 100,00
mbD107_n50_al000 314,25 7.89 309,37 -1,58 94,75
mbD108_n50_al000 294,13 6,14 294,94 0,27 100,00
mbD109_n50_al000 327,48 3,29 320,28 -2,24 100,00
mhbD110_n50_al000 295,89 7.03 295,54 -1,13 96,12
Average 7.80 -1.,45 91,83

& Problem Sohving




FS-TSP: ML-guided matheuristics

Third matheuristic, computational results

GA MK 2024 THIRD ML HEUR (10% kernel 5% bucket)
Id UB Time UB Gap Time
Heuristic approaches: current state of the art mbE101_n100_a100 17810 3701 | 17581 1,30 300
mbE102_n100_a100 181,35 27,21 178,10 1,82 300
* Sasan Mahmoudinazlou & Changhyun Kwon (2024) mbE103_n100_a100 178,42 36,17 178,69 0,15 300
] ] ) ) ) mbEL04_n100_al00 179,75 51,61 177,75 1,13 300
A hybrid genetic algorithm with type-aware chromosomes for Traveling mbE105_n100_a100 182,04 32,81 175,34 3,82 300
Salesman Problems with Drone mbE106_n100_a100 181,05 45,30 179,05 1,12 300
mbE107_n100_a100 182,41 54,15 182,21 0,11 300
Published in EJOR mbE108_n100_a100 180,72 41,37 178,72 1,12 300
mbE109_n100_al00 180,70 51,66 179,64 0,59 300
mbE110_n100_a100 184,84 17,90 186,84 1,07 300
mbF101_n100_a500 329,92 26,79 320,92 2,80 300
Instances generated with Murray & Chu procedure mbF102_n100_a500 309,56 28,95 305,56 1,31 300
mbF103_n100_a500 322,90 781 323,09 0,06 300
with 100 customers - Dtl = 20 mbF104_n100_a500 320,25 7,83 319,55 0,22 300
mbF105_n100_a500 324,76 9,31 320,43 1,35 300
* Genetic algorithm vs. ML-guided matheuristic mbF106_n100_a500 292,16 39,54 285,31 2,40 300
mbF107_n100_a500 306,05 22,09 303,63 -0,80 300
e  Mathheuristic time limit = 300 sec mbF108_n100_a500 329,98 7.21 320,46 2,97 300
mbF109_n100_a500 327,98 7.19 325,86 0,65 300
*  Maximum number of analyzed buckets = 5 mbF110_n100_a500 319,14 7,53 316,21 0,93 300
mbG101_n100_a1000 411,53 31,62 405,22 1,56 300
Beter solutions mbG102_n100_a1000 401,98 16,31 385,69 422 300
mbG103_n100_a1000 422,68 28,78 423,52 0,20 300
The matheuristic always runs until the time limit. mbG104_n100_a1000 431,43 7,33 426,86 -1,07 300
mbG105_n100_a1000 419,82 15,96 414,24 1,35 300
mbG106_n100_a1000 430,77 14,80 427,33 0,80 300
mbG107_n100_a1000 403,66 6,85 399,93 0,93 300
mbG108_n100_al1000 421,51 28,44 410,15 2,77 300
G mbG109_n100_a1000 44123 26,69 437,83 0,78 300
mbG110_n100_a1000 438,78 7,32 434,52 0,98 300
Average 2478 -1.25 300

& Problem Sohving



Conclusion and future work perspectives

Heuristic approaches

» We presented an ML-guided matheuristic that achieves good results in terms of solution quality, but still
requires high computational times.

» Future improvements include:
v enhancing the solution of the reduced problem,
v' improving node classification quality,

v’ training classifiers on different instance classes (e.g., Poikonen).
EXxact approaches

» We described both a Branch-and-Cut method based on a Big-M-free MILP formulation and a Branch-and-
Price approach based on ng-route relaxation.

» The latter is able to solve large-scale instances, although its performance deteriorates on certain instance
classes.

» Future work should focus on improving their efficiency in order to handle more difficult instances, both in size
and in topological complexity.




Conclusion and future work perspectives

ISP TODAY

Future Directions

» Given the strong interest of both the scientific
community and logistics operators,
increasing attention will be devoted to exact
and heuristic methods for the many variants
of truck-and-drone problems:

. r_“_' - .
Rise of the Delivery Drones:

How Wing Plans to Deliver Millions

of Packoges by 2024

v" multi-drone and multi-vehicle
settings,

AMATGH

v drones able to serve mUltiple Amazon announces 8 innovations to
customers per Sortie, better deliver for f:usmmers, support .
employees, and give back to communities
around the world

v integrated systems with drones, other
autonomous vehicles, and parcel

I ocC k ers At last vear's Delivering the Future event, we announced the protofype
: of our latest drone design, the ME30. This vear, we revealed a jfirst

v look at the MK30, which will launch in 2024 LTIt S oM T

drone di Amazon non ¢ un
L} [H.‘I'il'lll'.‘l'l[ﬂ, Imna una
realta”

sl ngpiry irwisin Bryro Byt

Pards Carrvela Tripeeldy, oireffone rpolasione fosica @ mobilith Innovaiiva dell
“Frimve Alr & sodoe Ninlzio, dopo be merci armiveri [ trasporte delle persone”




...hoping no one is following her!
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