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Drones in Last-Mile Logistics: Research and Projects at OPSLab
Over the past years, the OPSLab at DIETI-UNINA has focused on optimization problems related to the use of drones in last-mile logistics. 
The lab is currently involved in three national research projects addressing these topics.

    Selected Publications
 M. Boccia, A. Masone, A. Sforza & C. Sterle. A column and row generation 

approach for the FSTSP. TR-C, 2021

 M. Boccia, A. Mancuso, A. Masone,  & C. Sterle. A new MILP formulation 
for the FSTSP. Networks, 2023.

 M. Boccia, A. Mancuso, A. Masone, T. Murino  & C. Sterle. New features for 
customer classification in the FSTSP. ESWA, 2024

 M. Boccia, A. Masone, A. Sforza & C. Sterle. Exact and heuristic approaches for 
the Truck–Drone Team Logistics Problem. TR-C, 2024

 D. Amitrano, M. Boccia, A Masone & C. Sterle. A New Formulation for the 
Traveling Salesman Problem With Drone and Lockers. Networks, 2025.

    C. Archetti, M. Boccia, A Masone & C. Sterle. A new MILP formulation and a 
Matheuristic approach for the TSP with Release Dates and Drone Resupply. 
Submitted to an international journal.

    M. Boccia, M. Brambilla, R. Mansini, A Masone & C. Sterle. A Machine Learning-
Guided Matheuristic Approaches for the Flying Sidekick TSP. Ongoing work

  Current Research Projects 

 MOST - National Center for Sustainable 
Mobility. It unites academia, industry, and 
institutions for greener, smarter transport.

 ACHILLES – PRIN2022 project on eco-
sustainable efficient tech-driven last-mile 
logistics, funded by EU–Next Generation 
EU and MUR, led by UniNa with IASI-CNR 
and UniCt.

 COSMO – PRIN2022 project on Co-Opetitive 
Sustainable Mobility Optimization, funded 
EU–NextGen and MUR.

Joint work with the other members of OPSLab at DIETI-UNINA: D. Amitrano, A. Mancuso  A. Masone and C. Sterle
 Not solely my fault — proudly a group effort.

 A. Masone, S. Poikonen & B. Golden. The multivisit drone routing problem with 
edge launches: An iterative approach with discrete and continuous improvements. 
Networks, 2022.



Outline of the presentation

1. Drones in logistics: motivations, background and literature review

2. The Flying Sidekick Traveling Salesman Problem (FS-TSP)

a) A Big-M Free MILP Formulation and a Branch-and-Cut Approach

b) A Branch-and-Price approach based on ng-route relaxation

c) Branch-and-Cut vs Branch-and-Price approaches 

d) A machine learning-guided matheuristic

3. Conclusions and future research directions



Drones in logistics: Motivation, Context, and Literature



Literature on Drone in Logistics: multinational use cases 

One of the most promising application fields where the use of drones can result useful is the last-mile logistics. 

 Several studies showed the benefits, in terms both of emissions and completion time reduction, that can be achieved by using drones for parcel deliveries.
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Literature on Drone in Logistics: use cases before 2021

Moshref-Javadi, M., & Winkenbach, M. (2021). Applications and Research avenues for drone-based models in logistics: 
A classification and review. Expert Systems with Applications, 177, 114854.



Literature on Drone in Logistics: recent use cases

Company/Project References Range Payload Sector Country

Walmart + Wing Garg et al. (2023) Up to 6 miles ≤ 5 lb Retail & Grocery USA

Walmart + Zipline (P2) Garg et al. (2023) 10 miles 6–8 lb Retail & Grocery USA

Amazon Prime Air (MK30) Garg et al. (2023) — (BVLOS) ≤ 5 lb Retail & General USA

Manna Drone Delivery Sorbelli et al. (2024) ≈ 3 km ≈ 4 kg Food & Convenience Ireland

Swoop Aero – 'Kite' Ostermann et al. (2025) Up to 120 km ≈ 3 kg Healthcare Ethiopia/Malawi/
Australia

Meituan (Keeta) Sorbelli et al. (2024) Urban routes < 3 kg Food & Quick Commerce China

Flytrex + DoorDash Jazairy (2024) ≈ 5 miles ≤ 3 kg Food & Grocery USA

UPS Flight Forward + 
Matternet M2

Jazairy (2024) Up to 20 km ≈ 2 kg Healthcare USA

Wing + NHS/Apian Ostermann et al. (2025) Urban corridors — Healthcare UK

SF Express Ostermann et al. (2025) Inter-city trial — Express logistics China



Literature on Drone in Logistics: surveys
• Otto, A., Agatz, N., Campbell, J., Golden, B., & Pesch, E. (2018). Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial 

drones: A survey. Networks, 72(4), 411-458.

• Khoufi, I., Laouiti, A., & Adjih, C. (2019). A survey of recent extended variants of the traveling salesman and vehicle routing problems for unmanned aerial 
vehicles. Drones, 3(3), 66.

• Macrina, G., Pugliese, L. D. P., Guerriero, F., & Laporte, G. (2020). Drone-aided routing: A literature review. Transportation Research Part C: Emerging 
Technologies, 120, 102762.

• Rojas Viloria, D., Solano‐Charris, E. L., Muñoz‐Villamizar, A., & Montoya‐Torres, J. R. (2021). Unmanned aerial vehicles/drones in vehicle routing problems: a 
literature review. International Transactions in Operational Research, 28(4), 1626-1657.

• Boysen, N., Fedtke, S., & Schwerdfeger, S. (2021). Last-mile delivery concepts: a survey from an operational research perspective. Or Spectrum, 43, 1-58.

• Moshref-Javadi, M., & Winkenbach, M. (2021). Applications and Research avenues for drone-based models in logistics: A classification and review. Expert Systems 
with Applications, 177, 114854. 

• Sah, B., Gupta, R., & Bani-Hani, D. (2021). Analysis of barriers to implement drone logistics. International Journal of Logistics Research and Applications, 24(6), 
531-550. 

• Liang, Y. J., & Luo, Z. X. (2022). A survey of truck–drone routing problem: Literature review and research prospects. Journal of the Operations Research Society of 
China, 10(2), 343-377.

• Rejeb, A., Rejeb, K., Simske, S. J., & Treiblmaier, H. (2023). Drones for supply chain management and logistics: a review and research agenda. International 
Journal of Logistics Research and Applications, 26(6), 708-731.

• Garg, V., Niranjan, S., Prybutok, V., Pohlen, T., & Gligor, D. (2023). Drones in last-mile delivery: A systematic review on Efficiency, Accessibility, and Sustainability. 
Transportation Research Part D: Transport and Environment, 123, 103831.

• Jahani, H., Khosravi, Y., Kargar, B., Ong, K. L., & Arisian, S. (2025). Exploring the role of drones and UAVs in logistics and supply chain management: a novel 
text-based literature review. International Journal of Production Research, 63(5), 1873-1897.



Last mile delivery with truck and drone systems
The best approach for last-mile logistics involves the combined use of traditional vehicles and drones. (Agats et al., Transp. 
Sci.2018; Chung et al. Comp. Oper. Res. 2020; Liang and Luo, J. Oper. Res. Soc. China 2022; etc.)

   🚚🚁 Synchronization between the truck and the drone:

• the two vehicles operate in parallel with no interaction between them 

• the two vehicles operate in tandem coordinating their movements

The main delivery systems using a truck and a drone for parcel transportation can be 
classified based on two key parameters:

   📦👤 Interaction between the drone and the customers:

• the drone delivers parcels directly to customer locations
• the drone resupplies the truck with parcels becoming available while deliveries are in 

progress

Based on these two parameters, we can identify three different truck-and-drone systems for last-mile delivery



Last mile delivery with truck and drone systems

  Parallel truck-drone system

Truck movement

Drone movement

• the drone delivers parcels directly to 
customer locations

• the two vehicles operate in parallel with 
no interaction between them PDS- TSP

Parallel Drone Scheduling TSP

C. C. Murray and A. G. Chu. The Flying Sidekick Traveling Salesman Problem: Optimization of 
Drone-assisted Parcel Delivery. Transportation Research Part C, 2015.



Last mile delivery with truck and drone systems

  Drone resupply system

Truck movement

Drone movement

• the drone resupplies the truck with parcels 

released during ongoing deliveries

• the two vehicles operate in tandem 
coordinating their movements

 TSP with Release Dates and Drone Resupply

J. C. Pina-Pardo, D. F. Silva, & A. E. Smith. The traveling salesman problem with release dates 
and drone resupply. Computers & Operations Research, 2021.

TSP-RD-DR

PDS- TSP
• there is no interaction between the drone 

and the customers

• not all customer parcels are available at the 
depot at the beginning of the planning horizon



Last mile delivery with truck and drone systems

  Synchronized truck-drone system

• the drone delivers parcels directly to 
customer locations

• the two vehicles operate in tandem 
coordinating their movements

Flying Sidekick TSP

C. C. Murray and A. G. Chu. The Flying Sidekick Traveling Salesman Problem: 
Optimization of Drone-assisted Parcel Delivery. Transportation Research Part C, 2015.

FS-TSP

Truck movement

Drone movement

PDS- TSP

TSP-RD-DR



Synchronized truck and drone system

How truck and drone work together to optimize deliveries




The Flying Sidekick Traveling Salesman Problem
(FS-TSP )



 the drone is launched from the truck,
 it proceeds to deliver goods to a customer

The Flying Sidekick TSP is a variant of the traveling salesman problem involving drone-assisted parcel delivery

The FS-TSP is a delivery problem in which a truck and a drone (unmanned aerial vehicle UAV) are used as a synchronized working 
unit to make the delivery process more efficient and, possibly, less expensive.  

Drone tasks

 it joins back the truck before its endurance is exhausted

 while the drone is serving a customer, the truck travels to deliver parcels to other customers

Truck tasks

 it has to recover the drone before finishing the endurance of the drone 
 it can serve other customers when the drone is “on board”

FS-TSP: problem statement



FS-TSP: problem statement

Example:

Serving two customers with the drone instead of the truck can reduce the overall delivery time required to serve all the customers.

The Flying Sidekick TSP is a variant of the traveling salesman problem involving drone-assisted parcel delivery

The FS-TSP is a delivery problem in which a truck and a drone (unmanned aerial vehicle UAV) are used as a synchronized working 
unit to make the delivery process more efficient and, possibly, less expensive.  



 FS-TSP decision levels:

- Routing decision          route performed by the truck

- Assignment decision      clients to served by the drone or by the truck 
(the drone can only deliver parcels to eligible customers – payload capacity)

- Operational Decisions  launch and pick-up node for each drone flight 
(considering the endurance limit of the drone)

Objective: minimize the overall delivery time 

FS-TSP: problem statement

The Flying Sidekick TSP is a variant of the traveling salesman problem involving drone-assisted parcel delivery

The FS-TSP is a delivery problem in which a truck and a drone (unmanned aerial vehicle UAV) are used as a synchronized working 
unit to make the delivery process more efficient and, possibly, less expensive.  



   Flying Sidekick TSP: exact approaches

 C. C. Murray & A. G. Chu. The Flying Sidekick Traveling Salesman Problem: Optimization of Drone-assisted Parcel Delivery. Transportation Research 
Part C, 2015.

- MILP formulation and two heuristic approaches
- None of the 10 customers benchmark instances solved to optimality.

 M. Dell’Amico, R. Montemanni & S. Novellani. Exact models for the flying sidekick traveling salesman problem. International Transactions in 
Operational Research, 2022.

- Branch and cut approach
- Solve to optimality most of the 20 customers Murray instances

 M. Boccia, A. Masone, A. Sforza & C. Sterle. A column and row generation approach for the flying sidekick traveling salesman problem. Transportation 
research Part C: Emerging Technologies, 2021.

- Column and row generation approach
- Solve to optimality most of the 20 customers Murray instances

 R. Roberti & M. Ruthmair. Exact methods for the traveling salesman problem with drone. Transportation Science, 2021.
- Branch and price and dynamic programming
- Solve to optimality most of the 40 customers Poikonen instances

 M. Boccia, A. Mancuso, A. Masone,  & C. Sterle. A new MILP formulation for the flying sidekick traveling salesman problem. Networks, 2023.
- Branch and Cut approach
- Solve to optimality the 20 customers Murray instances
- Solve to optimality most of instances up to 40 customers Poikonen instances

FS-TSP: literature review

 M. Blufstein, G. Lera-Romero & F. J. Soulignac. Decremental State-Space Relaxations for the Basic Traveling Salesman Problem with a Drone. 
INFORMS Journal on Computing, 2024.

- Branch and Price and dynamic programming approach
- Solve to optimality instances up to 60 customers Poikonen instances



To account for synchronization constraints between drone and truck, most of the models in the literature either contain Big-M 

constraints or use an exponential number of variables.

FS-TSP: drawbacks in literature models

−     if the arc (i,j) is included to the truck route− sortie    if the drone performs the sortie − time    time at which the truck (drone) arrives at node j− precedence       if customer i is visited before costomer j− p       specifies the position of node i in the truck route

Decision variables:

Murray and Chu (2015) 



FS-TSP: drawbacks in literature models

Murray and Chu (2015) 

To account for synchronization constraints between drone and truck, most of the models in the literature either contain Big-M 

constraints or use an exponential number of variables.



A MILP formulation without big-M constraints and 
with a polynomial number of variables



FS-TSP: MILP formulation

A solution can be fully defined without requiring the exact arrival times of the truck and the drone at the nodes.

Information fully defining a feasible solution

Truck information
 The truck route

 The total travel time along the arcs of the route

Drone sorties (for each sortie):
 The drone path and its total travel time

 The truck path and its total travel time

 The truck waiting time, computed as the difference between the drone travel time and the truck travel time

The objective value of the solution is given by the sum of:

 The truck travel time

 The service time for launch and recovery of each sortie

 The truck waiting time for each sortie



FS-TSP: MILP formulation
 The depot is splitted into two nodes, an origin node () with only outgoing arcs and a destination node () with only incoming arcs.

  is the complete directed graph where  and  is the set of arcs. 

 ,  is the truck travelling time and  is the drone travelling time. 

  and  are the drone launch and recovery time, respectively. 

  is the drone time limit. 

   Binary decision variables:−  if the arc (i,j) belongs to the truck path−  if the arc (i,j) is crossed by the truck while the drone is serving − =1 if client h is served by the drone −  if node i  is the origin node of the sortie serving client −  if node i is the destination node of the sortie serving client 

   Continuous decision variables:−  is the waiting time of the truck at the destination node of the sortie serving client  



FS-TSP: MILP formulation
   Binary decision variables:−  if the arc (i,j) belongs to the truck path−  if the arc (i,j) is crossed by the truck while the drone is serving − = 1    if client h is served by the drone −  if node i  is the origin node of the sortie serving client −  if node i is the destination node of the sortie serving client 

   Continuous decision variables:−  is the waiting time of the truck at the destination node of the sortie serving client  

Example of feasible solution

𝑦 𝑖𝑗=1 𝑦 𝑗𝑝=1 𝑦𝑝𝑞=1 𝑦𝑞𝑟=1

𝑦 𝑗𝑝
h =1 𝑦𝑝𝑞

h =1

𝜗h=1

𝜔 𝑗
h=1 𝛿𝑞

h=1

𝜎 h=max ⁡(0 ,𝑑 h𝑗 +𝑑h𝑞−𝑡 𝑗𝑝−𝑡𝑝𝑞)



FS-TSP: MILP formulation
   Binary decision variables:−  if the arc (i,j) belongs to the truck path−  if the arc (i,j) is crossed by the truck while the drone is serving − = 1    if client h is served by the drone −  if node i  is the origin node of the sortie serving client −  if node i is the destination node of the sortie serving client 

   Continuous decision variables:−  is the waiting time of the truck at the destination node of the sortie serving client  

Objective function

𝑀𝑖𝑛 ∑
(𝑖 , 𝑗 )∈ 𝐴

𝑡 𝑖𝑗 𝑦 𝑖𝑗+ ∑
h ∈𝐶

(𝑆𝐿+𝑆𝑅 )𝜗h − ∑
h ∈𝐶

𝑆𝐿𝜔𝑠
h
+ ∑

h ∈𝐶

𝜎h

Truck Route 
Length

Launch and 
Recovery Time

Waiting 
Time



FS-TSP: MILP formulation

∑
𝑖 , 𝑗∈𝑆∨(𝑖 , 𝑗 )∈ 𝐴

𝑦 𝑖𝑗 ≤ ∑
h∈𝑆 ¿𝑞}

(1−𝜗h )𝑆⊆𝑉 ,𝑞∈𝑆

∑
𝑗 : (𝑠 , 𝑗)∈ 𝐴

𝑦𝑠 𝑗= ∑
𝑖 :(𝑖 , 𝑡)∈ 𝐴

𝑦 𝑖𝑡=1

∑
𝑗 : (𝑖 , 𝑗 )∈ 𝐴

𝑦 𝑖𝑗= ∑
𝑗 :( 𝑗 ,𝑖)∈ 𝐴

𝑦 𝑗𝑖≤1 𝑖∈𝑉

One outgoing arc from the origin and one 

ingoing arc to the destination node

If i is visited by the truck, it must have exactly one 

incominc and one outgoing arc

Subtour elimination constraints

   Truck routing constraints:

   Truck sortie constraints:

∑
𝑗 : (𝑖 , 𝑗 )∈ 𝐴

𝑦 𝑖𝑗
h − ∑

𝑗 : ( 𝑗 , 𝑖 )∈ 𝐴

𝑦 𝑗𝑖
h =𝜔𝑖

h −𝛿𝑖
h𝑖∈𝑉 h ∈𝐶 For each sortie, there is a path from the launch node to the recovery 

node travelled by the truck without the drone on board

   Single assignment constraints:

𝑦 𝑖𝑗+𝜔 𝑖
𝑗+𝛿𝑖

𝑗≤ 1(𝑖 , 𝑗)∈𝐴

∑
𝑗 : (h , 𝑗 )∈ 𝐴

𝑦 h𝑗+𝜗
h=1h ∈𝐶

If (i,j) is crossed by the truck then the drone can’t fly from i to j or 

from j to i

Each client must be served either by the truck or by the drone



   Drone endurance constraints:

∑
(𝑖 , 𝑗 )∈ 𝐴

𝑡 𝑖𝑗 𝑦 𝑖𝑗
h ≤ (𝐷𝑡𝑙−𝑆𝑅 )𝜗h h ∈𝐶The duration of the truck path of a sortie can’t exceed the 

drone endurance 

∑
𝑖∈𝑉 ¿𝑡 }

𝑑 h𝑖 𝜔 𝑖
h+ ∑

𝑗 ∈𝑉 ¿𝑠 }

𝑑h𝑗 𝛿 𝑗
h ≤ (𝐷𝑡𝑙−𝑆𝑅 )𝜗hh ∈𝐶The duration of a drone sortie can’t exceed the drone 

endurance 

   Waiting time constraints:

∑
𝑖∈𝑉 ¿𝑡 }

𝑑 h𝑖 𝜔 𝑖
h+ ∑

𝑗 ∈𝑉 ¿𝑠 }

𝑑h𝑗 𝛿 𝑗
h − ∑

(𝑖 , 𝑗 )∈ 𝐴

𝑡𝑖𝑗 𝑦 𝑖𝑗
h ≤𝜎 h h∈𝐶

The truck waiting time of a sortie is given by the 

difference between the duration of the drone path and the 

duration of the truck path, if it is greater than 0

FS-TSP: MILP formulation

   Consistency constraints:

∑
h ∈𝐶¿ 𝑖}

𝜔𝑖
h+𝜗𝑖≤ 1 𝑖∈𝐶

∑
h ∈𝐶

𝑦 𝑖𝑗
h ≤ 𝑦 𝑖𝑗 (𝑖 , 𝑗 )∈ 𝐴

∑
𝑖∈𝑉 ¿𝑡 ,h }

𝜔 𝑖
h= ∑

𝑗 ∈𝑉 ¿ 𝑠 ,h }𝛿 𝑗
h
=𝜗 h h∈𝐶 ¿

¿

The truck path during a drone sortie must be a subpath or 

the origin destination path

If h is served by the drone, the corresponding sortie must 

have a launch and a recovery node

If i is the launch node of a sortie, it can’t be served by the 

drone

∑
h ∈𝐶¿ 𝑗 }

𝛿 𝑗
h +𝜗 𝑗≤ 1 𝑗∈𝐶If j is the recovery node of a sortie, it can’t be served by 

the drone



𝑀𝑖𝑛 ∑
(𝑖 , 𝑗 )∈ 𝐴

𝑡 𝑖𝑗 𝑦 𝑖𝑗+ ∑
h∈𝐶

(𝑆𝐿+𝑆𝑅 )𝜗h − ∑
h∈𝐶

𝑆𝐿𝜔𝑠
h
+ ∑

h∈𝐶

𝜎 h
   Objective function:

∑
𝑖 , 𝑗∈𝑆∨(𝑖 , 𝑗 )∈ 𝐴

𝑦 𝑖𝑗 ≤ ∑
h∈𝑆 ¿𝑞}

(1 −𝜗h )𝑆⊆𝑉 ,𝑞∈𝑆

∑
𝑗 : (𝑠 , 𝑗)∈ 𝐴

𝑦𝑠 𝑗= ∑
𝑖 :(𝑖 , 𝑡)∈ 𝐴

𝑦 𝑖𝑡=1

∑
𝑗 : (𝑖 , 𝑗 )∈ 𝐴

𝑦 𝑖𝑗= ∑
𝑗 :( 𝑗 ,𝑖)∈ 𝐴

𝑦 𝑗𝑖≤1 𝑖∈𝑉

   Truck routing constraints:

   Truck sortie constraints:

∑
𝑗 : (𝑖 , 𝑗 )∈ 𝐴

𝑦 𝑖𝑗
h − ∑

𝑗 : ( 𝑗 , 𝑖 )∈ 𝐴

𝑦 𝑗𝑖
h =𝜔𝑖

h −𝛿𝑖
h𝑖∈𝑉 h ∈𝐶

   Single assignment constraints:

𝑦 𝑖𝑗+𝜔 𝑖
𝑗+𝛿𝑖

𝑗≤ 1(𝑖 , 𝑗)∈𝐴

∑
𝑗 : (h , 𝑗 )∈ 𝐴

𝑦 h𝑗+𝜗
h=1h ∈𝐶

FS-TSP: MILP formulation

   Drone endurance constraints:

∑
(𝑖 , 𝑗 )∈ 𝐴

𝑡 𝑖𝑗 𝑦 𝑖𝑗
h ≤ (𝐷𝑡𝑙−𝑆𝑅 )𝜗h h ∈𝐶

∑
𝑖∈𝑉 ¿𝑡 }

𝑑 h𝑖 𝜔 𝑖
h+ ∑

𝑗∈𝑉 ¿𝑠 }

𝑑h𝑗 𝛿 𝑗
h ≤ (𝐷𝑡𝑙−𝑆𝑅 )𝜗hh ∈𝐶

   Waiting time constraints:

∑
𝑖∈𝑉 ¿𝑡 }

𝑑 h𝑖 𝜔 𝑖
h+ ∑

𝑗 ∈𝑉 ¿𝑠 }

𝑑h𝑗 𝛿 𝑗
h − ∑

(𝑖 , 𝑗 )∈ 𝐴

𝑡𝑖𝑗 𝑦 𝑖𝑗
h ≤𝜎 h h∈𝐶

   Consistency constraints:

∑
h ∈𝐶¿ 𝑖}

𝜔𝑖
h+𝜗𝑖≤ 1 𝑖∈𝐶

∑
h ∈𝐶

𝑦 𝑖𝑗
h ≤ 𝑦 𝑖𝑗 (𝑖 , 𝑗 )∈ 𝐴

∑
𝑖∈𝑉 ¿𝑡 ,h }

𝜔 𝑖
h= ∑

𝑗∈𝑉 ¿ 𝑠 ,h }𝛿 𝑗
h
=𝜗 h h ∈𝐶 ¿

¿

∑
h ∈𝐶¿ 𝑗}

𝛿 𝑗
h +𝜗 𝑗≤ 1 𝑗∈𝐶



FS-TSP: Branch-and-Cut
Valid inequalities:

In any feasible solution there must be a truck path from the origin node  to the generic node  and from  to the destination node , if  is 
served by the truck ().

Cut inequalities 

∑
(𝑖 , 𝑗 )∈(𝑉 𝑠 :𝑉 h)

𝑦 𝑖𝑗≥ 1−𝜗h h ∈𝐶 ∑
(𝑖 , 𝑗 )∈(𝑉 h :𝑉 𝑡 )¿

¿ 𝑦 𝑖𝑗≥ 1 −𝜗h h ∈𝐶

 − cut separating s and h
 − cut separating h and t

Cut inequalities strengthen the FS-TSP formulation and they can be used as subtour elimination contraints

 They are added dynamically to the relaxed formulation (without the subtour elimination constraints). 

 The separation algorithm consists of the solution of a min-cut problem between  and  ( and ), on the graph , where each arc  is 
weighted with the fractional value attained by the variable  in the current LP relaxation.



FS-TSP: Branch-and-Cut, implementation details

The Branch-and-Cut algorithm was implemented using the callbacks provided by the Gurobi solver

 At the other nodes of the enumeration tree the subtour elimination constraints are separated as lazy constraints:
– whenever an integer solution is found, it is checked whether the constraints are satisfied (i.e., whether the 

solution contains subtours).
• If satisfied, the incumbent value is updated
• If violated, the corresponding subtour elimination constraints are added to the formulation. 

 It starts with the solution of the linear programming relaxation

Boccia, Mancuso, Masone and  Sterle (2023) 

 At each node of the first three levels of the enumeration tree, the Cut inequalities  are separated by means of a 
max-flow separation procedure for both integer and fractional solutions.

− The experiments were performed on an Intel(R) Core(TM) i7-8700k, 3.70 Ghz, 16.00 GB of RAM. 

− The branch-and-cut algorithm has been coded in Python using Gurobi 9.5 Callable Library.



Test bed 1 (Murray and Chu Instances)

 120 instances with 20 customers and drone endurance Dtl = 20 minutes
 120 instances with 20 customers and drone endurance Dtl = 40 minutes

Best results in Dell’Amico et al. (2022) and in Boccia et al. (2021)

The proposed approach solves to optimality in a time limit of 1 hour :
 37 of 38 unsolved instances with Dtl = 20
 102 of 116 unsolved instances with Dtl = 40

FS-TSP: Branch-and-Cut, computational results
Boccia, Mancuso, Masone and  Sterle (2023) 

The 2023 results remain the best reported in the literature for this Test bed.



FS-TSP: Branch-and-Cut, computational results
Boccia, Mancuso, Masone and  Sterle (2023) 

Test bed 2 (Poikonen Instances)

 300 instances with 9, 19, 29, and 39 custormers, with Dtl = 20.

Best results (then): Roberti and Ruthmair (2021).
 Branch-and-Price approach 
 Pricing problem solved with a dynamic programming algorithm

Roberti and Ruthmair Branch and Cut

Average time 392,8 secs 517 secs.

Average gap 1,37 0,17

# unsolved 
instances

14 22

Results on the Poikonen instances with time limit of 1 hour



FS-TSP: Branch-and-Cut, computational results
Boccia, Mancuso, Masone and  Sterle (2023) 

Test bed 2 (Poikonen Instances)

 300 instances with 9, 19, 29, and 39 custormers, with Dtl = 20.

Best results (then): Roberti and Ruthmair (2022).

Roberti and Ruthmair Branch and Cut

Average time 392,8 secs 517 secs.

Average gap 1,37 0,17

# unsolved 
instances

14 22

Results on the Poikonen instances with time limit of 1 hour

Best current results: Blufstein, Lera-Romero and Soulignac (2024).
 Branch-and-Price approach 
 Pricing problem solved with a dynamic programming algorithm
 Smart variable fixing strategies

They are able to solve Poikonen instances with up to 60 nodes.



FS-TSP: Murray and Chu vs. Poikonen Instances

Murray and Chu Instances

 Customers randomly placed in a 20×20 square

 Distribution is not uniform but denser near depot (40%, 
60%, and 80% of customers are located within a circle 
centered at the depot with radius 10 mi.)

 Distances: Manhattan (truck), Euclidean (drone).

 Speeds: Truck = 25 mph, Drone = 25 or 35 mph.

 SR = SL = 1

 Dtl = 20 or 40

Poikonen Instances

 Customers and depot randomly placed in a 50×50 grid

 Truck time = Manhattan distance

 Drone time = Euclidean distance × α, with α=1,2 or 3

 No service times (SR = SL = 0)

 Dtl = 20

Because customers are on average closer to each other, the Murray and Chu instances present a larger number of feasible 
sorties, often with the truck covering multiple arcs before picking up the drone.

ii jj

hh

pp qq rrll

Such sorties are more likely in the feasible solutions 
of the first test bed than in the second.



A Branch and Price approach for the FS-TSP                      
based on the ng-route relaxation 



FS-TSP: set partitioning formulation

sortie    is a synchronized pair of a truck path and a two-arc drone path between the same nodes;

combined path      is a path followed by the truck with the drone on board;

length (of a sortie or combined path)     is the number of nodes visited, excluding the origin

Definitions:

Combined path: d-1-2  length: 2     
   
Sortie: 2-4; 1-3-4     length: 2
Sortie: 4-5-7; 4-6-7  length: 3     
   
Sortie: 7-9; 7-8-9      length: 2     
         
Combined path:9-d   length: 1

A route is an ordered sequence of sorties and combined paths, from the depot back to the depot, with total length , 
where each component ends at the node where the next one begins

Example of feasible route Example of unfeasible route

Combined path: d-1  length: 1 
       
Sortie: 1-5; 1-2-5     length: 2
Sortie: 5-4; 5-3-4  length: 2 
       
Combined path: 4-6-5-7  
length: 3              
Sortie:7-d, 7-8-d   length: 2



FS-TSP: set partitioning formulation
 Let  be the set of all route in graph  

 : 

—  indicate the number of times customer  is visited by route ;

—  indicate the duration of route 

   Binary decision variables:−  if route r is selected,  otherwise

  Set partitioning Formulation:

𝑀𝑖𝑛∑
𝑟 ∈𝑅

𝑑𝑟 ξ𝑟

∑
𝑟∈𝑅

ξ𝑟=1

∑
𝑟𝜖 𝑅

𝑎𝑖𝑟 ξ𝑟=1𝑖∈𝐶

ξ𝑟𝜖 {0,1 }𝑟∈𝑅

Exactly one route must be selected

Each customer must be visited

The difficulty of the problem moves from 
the model to the exponentially large set 
of variables.



FS-TSP: branch-and-price

  Column generation

 Let  be a subset of  routes;

 Solve the linear relaxation of the subproblem defined by :
— let z* denote the optimal value of the subproblem;
— let  be the dual variable associated with the first constraint (;
— let , for , denote the dual variables associated with the partitioning constraints (). 

 Solve the following pricing problem:

let r* be the optimal solution of the pricing problem and d* its value;

𝑀𝑖𝑛𝑑𝑟 −𝑢0 − ∑
𝑖∈𝐶

𝑎𝑖𝑟𝑢𝑟

𝑟 ∈𝑅∖ 𝑅′

 If  then z* is the optimal value of the complete linear relaxation problem; otherwise update  and iterate the procedure.

At each node of the enumeration tree, a column generation procedure is applied to solve the linear relaxation of the set-partitioning 
formulation.



FS-TSP: branch-and-price

 The pricing problem on relaxed set  can be solved efficiently by dynamic programming. 

 The set of routes  is a relaxation of the set of feasible solutions, but it is far from being tight:

̶ provides weak lower bounds;

̶ leads to an exponential growth of the search tree;

̶ makes medium scale instances unsolvable.

A better approach: use a tighter relaxation without making the pricing problem too hard to solve.

Roberti & Ruthmair (2021) and Blufstein, Lera-Romero & Soulignac (2024) use the ng-Route relaxation, 
first proposed for the truck-only case by Baldacci, Mingozzi & Roberti (2011).



 Subtours are allowed    a customer may be skipped or visited more than once.

 Revisit of node i is allowed only if a «distant» node j is visited in between.

FS-TSP: branch-and-price, ng-route relaxation

Definition 

 For each node , the ng-set ( is the set of customers closest to ;

 An ng-route:

• starts/ends at the depot

• visiting exactly n (not necessary different) nodes

• customer  can be revisited iff there exists a customer  with  between the two visits.

ng-route relaxation: key ideas



5

 Subtours in ng-routes, when present, tend to be long and thus not appealing

 The lower bound provided by the ng-route relaxation is more effective

𝐶6

𝐶4

Example: non-ng-Route vs. ng-Route

FS-TSP: branch-and-price, ng-route relaxation

subtour 5->4->6->5 not allowed 2∉𝐶6 subtour 2->4->6->7-2 allowed

𝐶6



FS-TSP: branch-and-price, ng-route relaxation

 The least-reduced-cost ng-route can be computed by dynamic programming.

 Increasing the cardinality of the ng-sets improves the lower bounds provided by the ng-relaxation.

 On the other hand, the larger the cardinality of the ng-sets, the more time-consuming dynamic programming becomes, 
since it requires more state variables and weaker dominance rules. 

A proper trade-off must be found between the quality of the bounds and the computational effort.

In M. Blufstein, G. Lera-Romero & F. J. Soulignac. Decremental State-Space Relaxations for the Basic Traveling Salesman 
Problem with a Drone. INFORMS Journal on Computing, 2024, the authors:

 fixed the cardinality of the ng-sets to 5;

 used stronger dominance criteria than Roberti & Ruthmair (2021);

 adopted efficient fixing strategies to speed up the pricing procedure.

They achieved the best results available in the literature on the Poikonen test bed, solving to optimality instances 
with up to 60 nodes.



FS-TSP: branch-and-price vs. branch-and-cut

At present, the state-of-the-art solution for the FS-TSP relies on a Branch-and-Price algorithm proposed by Blufstein, G. Lera-
Romero & F. J. Soulignac (2024).

The question is:

 Does this really mean that Branch-and-Price is the best way — or even the only way — to solve the FS-TSP?

It is not easy to give a definite straightforward answer. 

But to address this question we can take a closer look at how the literature on exact 
approaches for the FS-TSP has evolved in recent years.



FS-TSP: branch-and-price vs. branch-and-cut
Evolution of exact approaches for the FS-TSP

 2015 – CPLEX Branch-and-Cut – C. C. Murray & A. G. Chu. The flying sidekick traveling salesman problem: 
Optimization of drone-assisted parcel delivery. Transportation Reseach Part C.

 2019 – Branch-and-Cut. – M. Dell’Amico, R. Montemanni & S. Novellani. Drone-assisted deliveries: new 
formulations for the Flying Sidekick Traveling Salesman Problem. Optimization Letters.

 2021 – Branch-and-Cut-and-Price  – M. Boccia, A. Masone, A. Sforza & C. Sterle. A column-and-row generation 
approach for the flying sidekick traveling salesman problem. Transportation Reseach Part C.

 2022 – Branch-and-Cut – M. Dell’amico, R. Montemanni & S. Novellani. Exact models for the flying sidekick 
traveling salesman problem. International Trancactions in Operational Research.

 2023 – Branch-and-Cut – M. Boccia, A. Mancuso, A. Masone & C. Sterle. A new MILP formulation for the flying 
sidekick traveling salesman problem. Networks.

 2024 – Branch-and-Price  – M. Blufstein, G. Lera-Romero & F. Soulignac. Decremental State-Space Relaxations 
for the Basic Traveling Salesman Problema with a Drone. INFORM Journal an Computing.

 2022 – Branch-and-Price – R. Roberti & M. Ruthmair. Exact methods for the traveling salesman problem with 
drone. Transportation Science.



FS-TSP: branch-and-price vs. branch-and-cut

At present, the state-of-the-art solution for the FS-TSP relies on a Branch-and-Price algorithm proposed by Blufstein, G. Lera-
Romero & F. J. Soulignac (2024).

The question is:

 Does this really mean that Branch-and-Price is the best way — or even the only way — to solve the FS-TSP?

 If we want to obtain good results from a Branch-and-Price approach, the key lies in improving the 
pricing problem and designing new relaxations to make it more efficient.

 On the other hand, if we aim to achieve good performance with a Branch-and-Cut approach, we 
need to focus on polyhedral analysis, the identification of new valid inequalities, as well as effective 
fixing and branching strategies.

At present, Blufstein, Lera-Romero, and Soulignac have done an excellent job, working on the pricing 
problem and achieving the best results so far.

I hope the next time I see you at a conference, it will be because one of our team is presenting a work entitled ‘New valid 
inequalities for the FS-TSP…’ — meaning we’ve finally improved our Branch-and-Cut.



Machine learning-guided matheuristic approach                      
for the FS-TSP 
(ongoing work)



FS-TSP: ML-guided matheuristics

Key questions:

 Drone customers / Truck customers known in advance    →    problem much simple
                                                                                                   …but still NP-hard (more complex than the TSP)

 But how could we possibly obtain this information?

When we don’t know the answer…    
we rely on  Machine Learning!

The solution of a FS-TSP instance requires to decide: 

 the subsets of customers assigned to the truck and to the drone, respectively;

 the nodes where the drone will be launched and retrieved for each drone sortie

 the order according to which the customers will be visited by the two vehicles

 What information could be useful to reduce the complexity of the problem and its formulation?



FS-TSP: ML-guided matheuristics
First matheuristic

Core Idea

 Goal: reduce the complexity of the original problem.

 Approach: use a Machine Learning classifier to assign customers to two categories:

 🚚 Truck only → can only be served by the truck

  ✈️ Drone only → can only be served by the drone

Impact on the Formulation

 Once customers are classified, the FS-TSP formulation can be simplified by fixing a large set of variables.

 The reduced model is then solved using the branch-and-cut approach.

Classification Experiment

 Input: original customer features.

 Output: label (truck only / drone only).

 Method: supervised Machine Learning experiment.

 Implementation: classification models built using the Scikit-learn package in Python.



FS-TSP: ML-guided matheuristics
Training set:

Training Set

 Instances generated with 10, 15, and 20 customers

 Generation procedure follows Murray and Chu (2025)

 Parameters varied:

 Customer density (average number of customers per 
unit square)

 Drone endurance 
 Drone speed)

Uniform Dataset Construction

 Each customer = one observation

 To balance the dataset:
 1,080 instances with 10 customers → 10,800 observations
 720 instances with 15 customers → 10,800 observations
 540 instances with 20 customers → 10,800 observations

Feature Design

 Problem-related features: parameters from the assumptions

 e.g., drone endurance, drone speed, truck speed, 
square side lenght …

 Graph-topology features: characteristics of the customer 
node within its local neighborhood

 e.g., node centrality measures, distance to the nearest 
customer …

Modular approach:

 Training is done on small/medium-sized instances

 Classification is applied to larger instances

 Neighborhood features computed only within the subgraph 
reachable by the drone (given its endurance)

Customer features:

Overall, we identified 6 problem-related features and 10 graph-topology features, which we then attempted to reduce by applying the feature 
selection procedures provided by the Scikit-learn.



FS-TSP: ML-guided matheuristics
Customer classification:

We tested eight different classifiers: 

• k-nearest neighbors (KNN), 

• linear support vector machine (LSV),

• kernel support vector machine (RSV),

• random forests (RAF),

• neural networks (NNE),

• adaptive boost algorithm (ADB)

• decision tree (DET),

• gradient bosting (GBM)

test_accuracy test_precision test_recall test_f1

KNN 0.798 0.861 0.884 0.871

LSV 0.848 0.857 0.965 0.908

RSV 0.802 0.830 0.940 0.881

RAF 0.815 0.821 0.978 0.892

NNE 0.852 0.867 0.926 0.896

ADB 0.849 0.870 0.949 0.907

DET 0.851 0.881 0.934 0.907

GRB 0.856 0.887 0.935 0.910

Accuracy → Among all predictions, the percentage that are correct.

Precision → Among the predicted positives, the percentage that are actually positive.

Recall → Among the actual positives, the percentage that are correctly predicted.

F1-Score → A single measure that balances precision and recall.

Positive prediction = node classified as truck-only.

Each tested classification model was used with its default parameter settings.

Based on the tests carried out, we chose to use the 
Gradient Boosting classifier and applied a feature 
selection procedure, which reduced the initial set 
from 16 features to 9.



FS-TSP: ML-guided matheuristics

 Step 1 – Classification
Nodes are classified into truck-only and drone-only using the ML classifier.

 Step 2 – MILP Reduction 
The MILP formulation of the problem is simplified according to this classification.

 Step 3 – Solution
The reduced model is solved with the branch-and-cut algorithm to obtain a 
feasible solution.

 Step 4 – Feasibility Check
If the reduced model turns out to be infeasible, some nodes are reclassified from 
drone-only to truck-only, and the branch-and-cut is solved again. 

Classification 
(ML classifier)

MILP 
Reduction

Branch-and-
Cut Solution

Feasibility 
Check

STOP

Reclassify 
Nodes

To speed up the procedure, a time limit is imposed for solving the reduced model.

First matheuristic, main steps



FS-TSP: ML-guided matheuristics
First matheuristic, computational results

Instances generated with Murray & Chu procedure  with 

30 customers - Dtl = 40

• Branch-and-Cut vs. ML-guided matheuristic

• Branch-and-Cut time limit  = one hour

• low computation time 

• Significant gaps between heuristic and B&C solutions

The gap shows how much the heuristic solution differs, in percentage terms, 
from the branch-and-cut one:

G



FS-TSP: ML-guided matheuristics

Second matheuristic:

 the classifier is forced to assign every customer to either the truck or the drone, even when the probability of belonging to a 
given class is very low.

Key limitation of the described heuristic:

Core Idea

 classifiers can provide probability scores for class membership

 A Machine Learning classifier is used to assign customers to three categories:

 🚚 Truck only → can only be served by the truck

  ✈️ Drone only → can only be served by the drone

❓ Not classified → customers that cannot be clearly assigned to either class.

*   Unclassified customers are those that the classifier cannot assign “truck-only” or “drone-only” with a probability above a
      given threshold. 

** In our experiments, the threshold value was chosen so that 10% of the nodes remain unclassified.

An increase in the complexity of the reduced problem is expected to lead to an improvement in the quality 
of the obtained solutions.



FS-TSP: ML-guided matheuristics
Second matheuristic, computational results

Instances generated with 

Murray & Chu procedure 

30 customers - Dtl = 40

G



FS-TSP: ML-guided matheuristics
Further limitation of the second heuristic:

 Some customers are good drone candidates individually; but serving both with the drone leads to a low-quality solution. 

Example:

 Poor-quality solution → both nodes 4 
and 5 are served by the drone

 Nodes 4 and 5 are good candidates 
to be served by the drone

 Good solutions → only node 4 
or node 5 is served by the drone



FS-TSP: ML-guided matheuristics
Further limitation of the second heuristic:

 Some customers are good drone candidates individually; but serving both with the drone leads to a low-quality solution. 

Third matheuristic (kernel search approach):

Kernel Search approach

 Rank customers by their probability of belonging to the truck or drone class

 Define kernel as the set of unclassified nodes (low probability)

 Solve the reduced problem considering only the kernel nodes as unclassified

 -  Iterative phase:

 Add the first unprocessed bucket of nodes to the kernel

 Solve the reduced problem again

 If some bucket nodes change class, add them to the kernel

 Repeat with the unprocessed bucket until all are considered

 - Parameters:

   Initial kernel size = 10% of nodes    -    Bucket size = 5% of nodes   -    Time limit per iteration = 0.5 × number of nodes

First reduced problem
unclussified nodes = kernel set

Initial solution

Second reduced problem
unclussified nodes = 
kernel + bucket 1

New solution – node 3 (outside 
the kernel) changed class

New kernel set – 
node 3 added to 
the kernel



FS-TSP: ML-guided matheuristics
Third matheuristic, computational results

Instances generated with Murray & Chu procedure 30 customers - Dtl = 40



FS-TSP: ML-guided matheuristics
Third matheuristic, computational results

Instances generated with Murray & Chu procedure  

with 50 customers - Dtl = 20

• Genetic algorithm vs. ML-guided matheuristic

• Mathheuristic time limit  = 100 sec

• Maximum number of analyzed buckets = 5

• Beter solutions

• Significantly higher computational times

Heuristic approaches: current state of the art

• Sasan Mahmoudinazlou & Changhyun Kwon (2024)

A hybrid genetic algorithm with type-aware chromosomes for Traveling 

Salesman Problems with Drone

Published in EJOR

G



FS-TSP: ML-guided matheuristics
Third matheuristic, computational results

Heuristic approaches: current state of the art

• Sasan Mahmoudinazlou & Changhyun Kwon (2024)

A hybrid genetic algorithm with type-aware chromosomes for Traveling 

Salesman Problems with Drone

Published in EJOR

Instances generated with Murray & Chu procedure  

with 100 customers - Dtl = 20

• Genetic algorithm vs. ML-guided matheuristic

• Mathheuristic time limit  = 300 sec

• Maximum number of analyzed buckets = 5

• Beter solutions

• The matheuristic always runs until the time limit.

G



Conclusion and future work perspectives

 We presented an ML-guided matheuristic that achieves good results in terms of solution quality, but still 
requires high computational times.

 Future improvements include:
 enhancing the solution of the reduced problem,
 improving node classification quality,
 training classifiers on different instance classes (e.g., Poikonen).

Heuristic approaches

 We described both a Branch-and-Cut method based on a Big-M-free MILP formulation and a Branch-and-
Price approach based on ng-route relaxation.

 The latter is able to solve large-scale instances, although its performance deteriorates on certain instance 
classes.

 Future work should focus on improving their efficiency in order to handle more difficult instances, both in size 
and in topological complexity.

Exact approaches



Conclusion and future work perspectives
Future Directions

 Given the strong interest of both the scientific 
community and logistics operators, 
increasing attention will be devoted to exact 
and heuristic methods for the many variants 
of truck-and-drone problems:

 multi-drone and multi-vehicle 
settings,

 drones able to serve multiple 
customers per sortie,

 integrated systems with drones, other 
autonomous vehicles, and parcel 
lockers.

 ….



…hoping no one is following her!

Thank you for your attention!
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