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Introduction

When training a machine learning model, accuracy of its predictions matters, as does
its transparency (Baesens et al., 2003; Panigutti et al., 2023; Rudin et al., 2022)
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> Transparency and explainability (Principle 1.3)

This principle is about transparency and responsible disclosure around Al systems to ensure that people understand when they are engaging with them
and can challenge outcomes

“ Al Actors should commit to transparency and responsible disclosure regarding Al systems. To this end, they should
provide meaningful information, appropriate to the context, and consistent with the state of art:
> to foster a general understanding of Al systems, including their capabilities and limitations,
> to make stakeholders aware of their interactions with Al systems, including in the workplace,

> where feasible and useful, to provide plain and easy-to-understand information on the sources of data/input,
factors, processes and/or logic that led to the prediction, content, recommendation or decision, to enable those
affected by an Al system to understand the output, and,

> to provide information that enable those adversely affected by an Al system to challenge its output.
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Introduction

Generally, linear models (e.g., medical
scoring systems (Ustun and Rudin,
2016)) are considered to be
easy-to-understand, as well as
rule-based models (Carrizosa et al.,
2021b)
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More complex models such as Random
Forests (Breiman, 2001) XGBoost (Chen
and Guestrin, 2016) and Deep Learning
(Goodfellow et al., 2016) are seen as
black boxes
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Introduction

@ Even linear models lose transparency when their complexity increases, as
measured, e.g., by # features. Classic methodologies such as LASSO (Tibshirani,
1996) or Best Subset selection (Bertsimas et al., 2016; Hazimeh and Mazumder,
2020) aim at selecting a small subset of features that give a good accuracy
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Introduction

@ Even linear models lose transparency when their complexity increases, as
measured, e.g., by # features. Classic methodologies such as LASSO (Tibshirani,
1996) or Best Subset selection (Bertsimas et al., 2016; Hazimeh and Mazumder,
2020) aim at selecting a small subset of features that give a good accuracy

@ Similarly, rule-based models lose transparency when the # rules increases
(Carrizosa et al., 2025b)
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Enhancing the transparency of (generalized) linear models

Sparsity in Generalized Linear Models for categorical data in Carrizosa
et al. (2021a)
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Sparsity in Generalized Linear Models for categorical data in Carrizosa
et al. (2021a)
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Enhancing the transparency of (generalized) linear models

Sparsity in Generalized Linear Models for categorical data in Carrizosa
et al. (2021a)
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Enhancing the transparency of (generalized) linear models

Sparsity for Linear Models for hierarchical data in Carrizosa et al.

(2022b)

An example of a hierarchical categorical feature
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Enhancing the transparency of (generalized) linear models

Sparsity for Linear Models for hierarchical data in Carrizosa et al.

(2022b)

Clustering cat. yields a sparser representation
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Enhancing the transparency of rule-based models

If-then rules to explain clusters in Carrizosa et al. (2023)
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Building surrogate interpretable models from opaque ones’

A surrogate optimal tree from a tree ensemble in Piccialli et al. (2024)
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Building surrogate interpretable models from opaque ones

A surrogate optimal tree from a tree ensemble in Piccialli et al. (2024)

boston - FCCA GradientBoosting

.

European Journal of Operational oo
Research
0.9 ELSEVIER Volume 317, Issue 2,1 Septerber 2024, Pages 273-285 (="
. m 08 Supervised feature compression based
g on counterfactual analysis
E _07 Veronica Piccialli %, Dolores Romero Morales ®, Cecilia Salvatore © & &
Show more v
_0 + Add to Mendeley o share 39 Cite
[ ] et rightsand conten 2
-N

! \ i I ' ! !
00 01 02 03 04 05 06 07 08 09
Thresholds

9/37



Building surrogate interpretable models from opaque ones

A surrogate optimal tree from a tree ensemble in Piccialli et al. (2024)
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Growing number of Explainable Al tools

Intelligent machines are asked to explain how
their minds work

Researchers tackle problem that threatens fo hold up adoption of advanced Al

A deep-learning machine on display at an arificil ntelligence frade-show in Tokyo last month © EPA

Richard Waters in San Francisco JULY 10 2017 s :

Researchers at Pare, a laboratory with links to some of Silicon Valley’s biggest
breakthroughs, have just taken on a particularly thorny challenge: teaching
intelligent machines to explain, in human terms, how their minds work.

The project, one of several sponsored by the US Defense Advanced Research
Projects Agency (Darpa), is part of the search for an answer to one of the
hardest problems in artificial intelligence.
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Given an opaque model, explain it locally

Given an ML model M, explain the prediction made for Xo
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Given an opaque model, explain it locally

Given an ML model M, explain the prediction made for Xo

XAl approaches (Bach et al., 2015; Burkart and Huber, 2021; Goldstein et al., 2015)
can be grouped into finding

@ Plethora of feature importance
@ the important variables in the metrics, including SHapley Additive
prediction of M for Xo, or exPlanations (aka, SHAP)
Lundberg and Lee (2017)

@ Local Interpretable Model-Agnostic
Explanations (aka, LIME)
Ribeiro et al. (2016)

@ a surrogate and interpretable model,
with high fidelity to M around xo, or

@ Counterfactual Explanations
Carrizosa et al. (2024); Martens and
Provost (2014); Wachter et al. (2017)

@ a counterfactual instance to x, but
with a desired prediction by M
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LIME in a nutshell

Given model M and Xq, LIME works as follows (Ribeiro et al., 2016)
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LIME in a nutshell

Given model M and Xq, LIME works as follows (Ribeiro et al., 2016)

@ Construct perturbations around xo, generating a set of instances
@ M is used to get the response for each instance
@ Each instance is weighted according to their proximity to x,

@ An interpretable surrogate model, usually a linear one, is fitted
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Outline

@ The CLIME methodology
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Collective Local Interpretable Model-Agnostic Explanations

We propose CLIME (Carrizosa et al., 2025a)

@ Today, a collective framework for LIME,
hereafter Collective Local Interpretable
Model-Agnostic Explanations (CLIME)
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Collective Local Interpretable Model-Agnostic Explanations

We propose CLIME (Carrizosa et al., 2025a)

@ Today, a collective framework for LIME,
hereafter Collective Local Interpretable
Model-Agnostic Explanations (CLIME)

@ For a collection of instances, we build a
surrogate model around each of them that is
interpretable and locally accurate

@ Our collective framework enables control over
global properties of the explanations such as
global feature selection, i.e., across the
surrogate models
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The surrogate model (and the decision) in CLIME

@ Feature space X C RP, and response space ) C R
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@ Feature space X C RP, and response space ) C R
@ The prediction function y : RP — ) associated with model M
@ The prediction function associated with surrogate model y that explains y

Generalized Linear Models (GLMs) as interpretable surrogate

@ Generalized Linear Models (GLMs) (Nelder and Wedderburn, 1972) as
interpretable surrogate models

@ The simplest case is a linear model with vector of coefficients 3(x) € R?
y(B(x), %) = B(x) "%,
so that y(8(x), X) ~ y(X). The fidelity of j to y around x can be measured, e.g., by
(7(B(x),%) — y(X))?

@ The decision in CLIME is 3 : R” — RP” yielding the coefficients 5(x) at instance x
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A visualization of the output of CLIME

Ba(x)
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x

Figure: Visualizing 84 (x) and 8(x) for a toy dataset, y = (xo — x1)% + 3xy.
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The surrogate model (and the decision) in CLIME

@ Although LIME mostly uses linear models independently of the nature of ), linear
models are not suitable, for instance, in Supervised Classification
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The surrogate model (and the decision) in CLIME

@ Although LIME mostly uses linear models independently of the nature of ), linear
models are not suitable, for instance, in Supervised Classification

@ GLMs are rich enough to deal with different types of response variable
g(E[Y | X =%]) = B(x) "%,
where g is the so-called link function. Conversely,

E[Y [X=%=g""(5(x)'%)

@ With this, by choosing the right g and fidelity, we can handle

Linear reg Logistic reg Poisson reg
for continuous response for binary response for count data response
g identity function g logistic function g exponential function
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The objective function in CLIME

As in LIME, we have a local measure of error:

5(B(x),x) := /w(x7 X)e(y(%), y(B(x), X)) dP(X) J
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@ Distribution P for ground truth of instances
e.g., discrete uniform on a set of instances, or mixture of Normal distributions

@ Weighting function w : R x R? — R
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The objective function in CLIME

As in LIME, we have a local measure of error:

5(B(x),x) := /w(X, X)e(y(%), y(B(x), X)) dP(X) J

@ Distribution P for ground truth of instances
e.g., discrete uniform on a set of instances, or mixture of Normal distributions

@ Weighting function w : R x R? — R

o2 5
[x—X]I3 [x—X]|2

e e Ljx—x)<e}

@ Loss function £ : R x R — R. For linear regression £(s, t) = (s — t)?, and for other
GLMs the negative of the corresponding log-likelihood.
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The objective function in CLIME

The objective function in CLIME measures the error incurred globally

a8) = [ 6(30x.%) daw), J

where Q is the distribution controlling the relevance of each explanation
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The objective function in CLIME

The objective function in CLIME measures the error incurred globally

A(B) = / 5(5(x), %) dQ(x),

where Q is the distribution controlling the relevance of each explanation

The optimization model behind CLIME
The global optimization problem associated with CLIME reads as follows

il A(B),

where B is the feasible region for 8

19/37



Theoretical properties of CLIME

Our framework addresses some draw- FeatureWise fiepresentation of 1) Function
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Theoretical properties of CLIME

Our framework addresses some draw-
backs of LIME pointed in the literature
(Garreau and von Luxburg, 2020; Sepul-
veda et al., 2025; Tiukhova et al., 2024;
Zhou and Wang, 2021). Indeed, if B con-
sists of all functions, the following proposi-
tion can be shown:

Proposition Under some technical condi-
tions, if w is continuous (resp., Lipschitz
continuous) then the optimal solution of
CLIME is continuous (resp., Lipschitz con-
tinuous)

val

M

'

20/37



Cost-Sensitive Feature Selection

Our methodology is designed to be able to control global properties
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Cost-Sensitive Feature Selection

Our methodology is designed to be able to control global properties

Model M may have used all p features, but, with a stakeholder point of view, we
would like to know whether there are surrogate models using fewer features with a
good error. For this, we now impose global sparsity to CLIME

This means that we would like to choose a subset of features 7 C {1, ..., p}, such that
the surrogate models can only use features in 7

21/37



The Cost-Sensitive Feature Selection Problem

The objective function of the Feature Selection Problem reads as follows
w(J) := ming,, Az(B7), with

@ (37, X7, X7 be the respective projections of 3, x, X
0 07 (Br(X7),X7) = [ws(Xs, X7 )Y (X), V7 (Bs(X7),X7))dP(X)
@ As(Br) = [d(Bs(x7),Xx7) dQ(X7)
Since the feature selection is cost-sensitive:
@ Let ¢; be the cost assigned to feature j (Carrizosa et al., 2008; Turney, 1995)

@ Let C be the total budget

mjin m(T)

> 6<C

jeg
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Solution approach

Assume that we have a solution 7 for the cost-sensitive feature selection problem.

For instance, 7% = 0, 7% = {1, ..., p} or 7% obtained with a greedy approach such
as in stepwise feature selection procedures (Hastie et al., 2009)
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as in stepwise feature selection procedures (Hastie et al., 2009)

Let V" be a measure of the contribution of feature j to 7 around J¢. The
linearization at 7 = J¢ yields the following Knapsack Problem

max Z \/jcr
J

jeTg
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Solution approach

Assume that we have a solution 7 for the cost-sensitive feature selection problem.
For instance, 7% = 0, 7% = {1, ..., p} or 7% obtained with a greedy approach such
as in stepwise feature selection procedures (Hastie et al., 2009)

Let V" be a measure of the contribution of feature j to 7 around J¢. The
linearization at 7 = J¢ yields the following Knapsack Problem

Algorlthm Iterative Algorithm For Feature Selection

cr 1: Input:
max E V Iniil feature set 7 Start
jE 7 Total budget C

: Output: Selected feature set 7N®
S t E Cj < C . Initialize:
jeg

* Incumbent feature set 7N¢ « rstart
: Current feature set 7 < 7'"¢
. while stopping criteria not met do
forj = 1topdo
Calculate \/jcr

How to measure \/jCr

end for
0:  Solve the Knapsack Problem with Vf’, for all j

{W(Jcr) - n(J¥u{y), j¢Tv, 11:  Update feature set 7" to its optimal solution

—© 00 NDUTRW N

cro._
J

o o o 12: it n(T%) < =(7"C) then
(TN {}) — =(T), ERTA 13: g . ger 1> Update incumbent solution
14:  endif
15: end while
16: return 7'"° > Return the best set found
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Datasets and CLIME ingredients

The ML model M to be explained is a Random Forest

Dataset Response | # Observations | # Features | Surrogate Model
Boston Housing Regression Continuous 506 13 Linear Reg
Communities and Crime Continuous 810 103 Linear Reg
Law School Continuous 20,800 17 Linear Reg
Boston Housing Classification | Binary 506 13 Logistic Reg
DebTrivedi Count data 4,406 21 Poisson Reg
Table: Summary of benchmark datasets
P Q w 4

Discrete uniform on dataset

Discrete uniform on dataset

w(xo. %) = e~ 2 %013

see surrogate model

Table: CLIME ingredients
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CLIME: Linear Regression

y P

Q

w

y

RF | Discrete uniform on dataset

Discrete uniform on dataset

w(xo, %) = e~ 2 %0313

Linear Reg

s

Global Error vs Budget Tradeoff For Boston Housing (Regression)

Figure: Boston Housing dataset (regression) with equal feature costs: Features chosen for all
possible values of budget C (left), and global error vs budget (right)
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CLIME: Linear Regression

Global Error vs Budget Tradeoff For Boston Housing (Regression)

Figure: Boston Housing dataset (regression) with non-equal feature costs: Features chosen by
Algorithm 1 for different values of budget C (left), and global error vs budget (right)
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CLIME: Linear Regression

Global Error vs Budget Tradeoff For Communities And Crime.

Figure: Ccommunities and Crime dataset (regression) with equal feature costs: Features
chosen by Algorithm 1 for budget C € {1,2,...,10} (left), and global error vs budget (right)
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CLIME: Linear Regression

Global Error vs Budget Tradeoff For Law School

Figure: Law School (regression) dataset with equal feature costs: Features chosen by Algorithm
1 for all values of budget C (left), and global error vs budget (right)
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CLIME: Classification

y P Q w y
1 %112
RF | Discrete uniform on dataset | Discrete uniform on dataset | w(Xo,X) = e~ 2 llxo —XII3 Logistic Reg

Global Error vs Budget Tradeoff For Boston Housing (Classifcation)

7 T 3 7 ) 3
s 3 7 s o ER— 2 ) ¢

Figure: Boston Housing dataset (classification) with equal feature costs: Features chosen for
all possible values of budget C (left), and global error vs budget (right)
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CLIME: Poisson Regression

P

Q

w y

RF

Discrete uniform on dataset

, , . T 72 | oo
Discrete uniform on dataset | w(Xo, X) = e~ 2% ~XI2 | poisson Reg

T35 § 3 5 3 bowmom B on

R )

Global Error vs Budget Tradeoff For DebTrived:

R R EEEEEE R
¢

Figure: Debtrivedi (regression with count data) dataset with equal feature costs: Features
chosen for all possible values of budget C (left), and global error vs budget (right)
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