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Introduction

When training a machine learning model, accuracy of its predictions matters, as does
its transparency (Baesens et al., 2003; Panigutti et al., 2023; Rudin et al., 2022)
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Introduction

Generally, linear models (e.g., medical
scoring systems (Ustun and Rudin,
2016)) are considered to be
easy-to-understand, as well as
rule-based models (Carrizosa et al.,
2021b)

More complex models such as Random
Forests (Breiman, 2001) XGBoost (Chen
and Guestrin, 2016) and Deep Learning
(Goodfellow et al., 2016) are seen as
black boxes
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Introduction

Even linear models lose transparency when their complexity increases, as
measured, e.g., by # features. Classic methodologies such as LASSO (Tibshirani,
1996) or Best Subset selection (Bertsimas et al., 2016; Hazimeh and Mazumder,
2020) aim at selecting a small subset of features that give a good accuracy

Similarly, rule-based models lose transparency when the # rules increases
(Carrizosa et al., 2025b)
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Enhancing the transparency of (generalized) linear models

Sparsity in Generalized Linear Models for categorical data in Carrizosa
et al. (2021a)

An example of a categorical feature

BE BG CZ DK DE EE SE
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Enhancing the transparency of (generalized) linear models

Sparsity in Generalized Linear Models for categorical data in Carrizosa
et al. (2021a)

Clustering categories into red and blue clusters

BE BG CZ DK DE EE SE
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Enhancing the transparency of (generalized) linear models

Sparsity in Generalized Linear Models for categorical data in Carrizosa
et al. (2021a)

yields a sparser representation of the variable

BE/BG/CZ/DE DK/EE/SE
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Enhancing the transparency of (generalized) linear models

Sparsity for Linear Models for hierarchical data in Carrizosa et al.
(2022b)

An example of a hierarchical categorical feature
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Enhancing the transparency of (generalized) linear models

Sparsity for Linear Models for hierarchical data in Carrizosa et al.
(2022b)

Clustering cat. yields a sparser representation
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Enhancing the transparency of rule-based models

If-then rules to explain clusters in Carrizosa et al. (2023)
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Building surrogate interpretable models from opaque ones1

A surrogate optimal tree from a tree ensemble in Piccialli et al. (2024)

1Bénard et al. (2021); Carrizosa et al. (2010, 2011, 2016, 2017, 2022a); Chevaleyre et al. (2013); Di Teodoro et al. (2024);
Emine et al. (2024); Golea and Marchand (1993); Li et al. (2017); Martens et al. (2007); Piccialli et al. (2024); Vidal and Schiffer
(2020)
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Building surrogate interpretable models from opaque ones

A surrogate optimal tree from a tree ensemble in Piccialli et al. (2024)

Node 1

LSTAT≤ 11

Node 2

RM≤ 6

Node 4 (−1)

RM > 6

Node 5 (+1)

LSTAT > 11

Node 3 (−1)
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Growing number of Explainable AI tools
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Given an opaque model, explain it locally

Given an ML model M, explain the prediction made for x0

XAI approaches (Bach et al., 2015; Burkart and Huber, 2021; Goldstein et al., 2015)
can be grouped into finding

the important variables in the
prediction of M for x0, or

Plethora of feature importance
metrics, including SHapley Additive
exPlanations (aka, SHAP)
Lundberg and Lee (2017)

a surrogate and interpretable model,
with high fidelity to M around x0, or

Local Interpretable Model-Agnostic
Explanations (aka, LIME)
Ribeiro et al. (2016)

a counterfactual instance to x0 but
with a desired prediction by M

Counterfactual Explanations
Carrizosa et al. (2024); Martens and
Provost (2014); Wachter et al. (2017)
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LIME in a nutshell

Given model M and x0, LIME works as follows (Ribeiro et al., 2016)

Construct perturbations around x0, generating a set of instances

M is used to get the response for each instance

Each instance is weighted according to their proximity to x0

An interpretable surrogate model, usually a linear one, is fitted
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Collective Local Interpretable Model-Agnostic Explanations

We propose CLIME (Carrizosa et al., 2025a)
Today, a collective framework for LIME,
hereafter Collective Local Interpretable
Model-Agnostic Explanations (CLIME)

For a collection of instances, we build a
surrogate model around each of them that is
interpretable and locally accurate

Our collective framework enables control over
global properties of the explanations such as
global feature selection, i.e., across the
surrogate models
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The surrogate model (and the decision) in CLIME

Feature space X ⊆ Rp, and response space Y ⊆ R
The prediction function y : Rp → Y associated with model M
The prediction function associated with surrogate model ŷ that explains y

Generalized Linear Models (GLMs) as interpretable surrogate
Generalized Linear Models (GLMs) (Nelder and Wedderburn, 1972) as
interpretable surrogate models

The simplest case is a linear model with vector of coefficients β(x) ∈ Rp

ŷ(β(x), x̃) = β(x)⊤x̃,

so that ŷ(β(x), x̃) ≈ y(x̃). The fidelity of ŷ to y around x can be measured, e.g., by

(ŷ(β(x), x̃)− y(x̃))2

The decision in CLIME is β : Rp → Rp yielding the coefficients β(x) at instance x
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(ŷ(β(x), x̃)− y(x̃))2

The decision in CLIME is β : Rp → Rp yielding the coefficients β(x) at instance x

15 / 37



The surrogate model (and the decision) in CLIME

Feature space X ⊆ Rp, and response space Y ⊆ R
The prediction function y : Rp → Y associated with model M
The prediction function associated with surrogate model ŷ that explains y
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A visualization of the output of CLIME

Figure: Visualizing β1(x) and β2(x) for a toy dataset, y = (x2 − x1)
2 + 3x1.
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The surrogate model (and the decision) in CLIME

Although LIME mostly uses linear models independently of the nature of Y, linear
models are not suitable, for instance, in Supervised Classification

GLMs are rich enough to deal with different types of response variable

g(E[Y | X = x̃]) = β(x)⊤x̃,

where g is the so-called link function. Conversely,

E[Y | X = x̃] = g−1(β(x)⊤x̃)

With this, by choosing the right g and fidelity, we can handle

Linear reg
for continuous response
g identity function

Logistic reg
for binary response
g logistic function

Poisson reg
for count data response
g exponential function
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The objective function in CLIME

As in LIME, we have a local measure of error:

δ(β(x), x) :=
∫

ω(x, x̃)ℓ(y(x̃), ŷ(β(x), x̃)) dP(x̃)

Distribution P for ground truth of instances
e.g., discrete uniform on a set of instances, or mixture of Normal distributions

Weighting function ω : Rp × Rp → R+

e−γ∥x−x̃∥2
2 e−γ∥x−x̃∥2 1{∥x−x̃∥≤ϵ}

Loss function ℓ : R× R → R. For linear regression ℓ(s, t) = (s − t)2, and for other
GLMs the negative of the corresponding log-likelihood.

18 / 37



The objective function in CLIME

As in LIME, we have a local measure of error:

δ(β(x), x) :=
∫

ω(x, x̃)ℓ(y(x̃), ŷ(β(x), x̃)) dP(x̃)
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The objective function in CLIME

The objective function in CLIME measures the error incurred globally

∆(β) :=

∫
δ(β(x), x) dQ(x),

where Q is the distribution controlling the relevance of each explanation

The optimization model behind CLIME
The global optimization problem associated with CLIME reads as follows

min
β∈B

∆(β),

where B is the feasible region for β
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Theoretical properties of CLIME

Our framework addresses some draw-
backs of LIME pointed in the literature
(Garreau and von Luxburg, 2020; Sepul-
veda et al., 2025; Tiukhova et al., 2024;
Zhou and Wang, 2021). Indeed, if B con-
sists of all functions, the following proposi-
tion can be shown:

Proposition Under some technical condi-
tions, if ω is continuous (resp., Lipschitz
continuous) then the optimal solution of
CLIME is continuous (resp., Lipschitz con-
tinuous)
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Cost-Sensitive Feature Selection

Our methodology is designed to be able to control global properties

Model M may have used all p features, but, with a stakeholder point of view, we
would like to know whether there are surrogate models using fewer features with a
good error. For this, we now impose global sparsity to CLIME

This means that we would like to choose a subset of features J ⊆ {1, . . . , p}, such that
the surrogate models can only use features in J
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The Cost-Sensitive Feature Selection Problem

The objective function of the Feature Selection Problem reads as follows
π(J ) := minβJ ∆J (βJ ), with

βJ , xJ , x̃J be the respective projections of β, x, x̃

δJ (βJ (xJ ), xJ ) :=
∫
ωJ (xJ , x̃J )ℓ(y(x̃), ŷJ (βJ (xJ ), x̃J ))dP(x̃)

∆J (βJ ) :=
∫
δ(βJ (xJ ), xJ ) dQ(xJ )

Since the feature selection is cost-sensitive:
Let cj be the cost assigned to feature j (Carrizosa et al., 2008; Turney, 1995)

Let C be the total budget

min
J

π(J )

s.t.
∑
j∈J

cj ≤ C

22 / 37



Solution approach

Assume that we have a solution J cr for the cost-sensitive feature selection problem.
For instance, J cr = ∅, J cr = {1, . . . , p} or J cr obtained with a greedy approach such
as in stepwise feature selection procedures (Hastie et al., 2009)

Let V cr
j be a measure of the contribution of feature j to π around J cr. The

linearization at J = J cr yields the following Knapsack Problem

max
J

∑
j∈J

V cr
j

s.t.
∑
j∈J

cj ≤ C

How to measure V cr
j

V cr
j :=

π(J cr) − π
(
J cr ∪ {j}

)
, j /∈ J cr,

π
(
J cr \ {j}

)
− π(J cr), j ∈ J cr

Algorithm Iterative Algorithm For Feature Selection

1: Input:
Initial feature setJ start

Total budget C
2: Output: Selected feature setJ inc

3: Initialize:
4: Incumbent feature setJ inc ← J start

5: Current feature setJ cr ← J inc

6: while stopping criteria not met do
7: for j = 1 to p do
8: Calculate Vcr

j
9: end for
10: Solve the Knapsack Problem with Vcr

j , for all j

11: Update feature setJ cr to its optimal solution
12: if π(J cr) < π(J inc) then
13: J inc ← J cr ▷ Update incumbent solution
14: end if
15: end while
16: returnJ inc ▷ Return the best set found
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Datasets and CLIME ingredients

The ML model M to be explained is a Random Forest

Dataset Response # Observations # Features Surrogate Model
Boston Housing Regression Continuous 506 13 Linear Reg
Communities and Crime Continuous 810 103 Linear Reg
Law School Continuous 20,800 17 Linear Reg
Boston Housing Classification Binary 506 13 Logistic Reg
DebTrivedi Count data 4,406 21 Poisson Reg

Table: Summary of benchmark datasets

P Q ω ℓ

Discrete uniform on dataset Discrete uniform on dataset ω(x0, x̃) = e−
1
2 ∥x0−x̃∥2

2 see surrogate model

Table: CLIME ingredients
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CLIME: Linear Regression

y P Q ω ŷ

RF Discrete uniform on dataset Discrete uniform on dataset ω(x0, x̃) = e−
1
2 ∥x0−x̃∥2

2 Linear Reg

Figure: Boston Housing dataset (regression) with equal feature costs: Features chosen for all
possible values of budget C (left), and global error vs budget (right)
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CLIME: Linear Regression

Figure: Boston Housing dataset (regression) with non-equal feature costs: Features chosen by
Algorithm 1 for different values of budget C (left), and global error vs budget (right)

26 / 37



CLIME: Linear Regression

Figure: Communities and Crime dataset (regression) with equal feature costs: Features
chosen by Algorithm 1 for budget C ∈ {1, 2, . . . , 10} (left), and global error vs budget (right)
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CLIME: Linear Regression

Figure: Law School (regression) dataset with equal feature costs: Features chosen by Algorithm
1 for all values of budget C (left), and global error vs budget (right)
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CLIME: Classification

y P Q ω ŷ

RF Discrete uniform on dataset Discrete uniform on dataset ω(x0, x̃) = e−
1
2 ∥x0−x̃∥2

2 Logistic Reg

Figure: Boston Housing dataset (classification) with equal feature costs: Features chosen for
all possible values of budget C (left), and global error vs budget (right)
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CLIME: Poisson Regression

y P Q ω ŷ

RF Discrete uniform on dataset Discrete uniform on dataset ω(x0, x̃) = e−
1
2 ∥x0−x̃∥2

2 Poisson Reg

Figure: Debtrivedi (regression with count data) dataset with equal feature costs: Features
chosen for all possible values of budget C (left), and global error vs budget (right)
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Conclusions

Global optimization formulation to enhance the explainability of ML models

With a stakeholder point of view, we control global sparsity

Very same methodology for different types of response variables through GLMs

Currently, dealing with complex data (Blanquero et al., 2019, 2023) and other
types of explainable surrogates (Carrizosa et al., 2021b)

Explainability in other decision-making domains (De Bock et al., 2024), such as
performance benchmarking (Benítez-Peña et al., 2020; Bogetoft et al., 2024)
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Thank you very much!
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